Building Electrification Committee Solar 101 - The Basics How to become your own power plant All the details and more

Mike Winka <u>mwinka@comcast.net</u> – 609-778-8717

Copyright Michael Winka - Solar 101 Clean Energy Tools

4/20/2022

Best advise – hire a reliable solar professional My goal is: To help you be armed with good information

So if you decide to go solar - you can get the most cost effective system you can install – I cannot design your system for you

Disclaimer: all calculations are estimates for examples

Can you electrify your home to light, heat, and cool your home and charge your EV's powered by your own fuel by 2030? By 2035? What would it take?

We can no longer think about this strategies in silos – but integrated holistic approaches

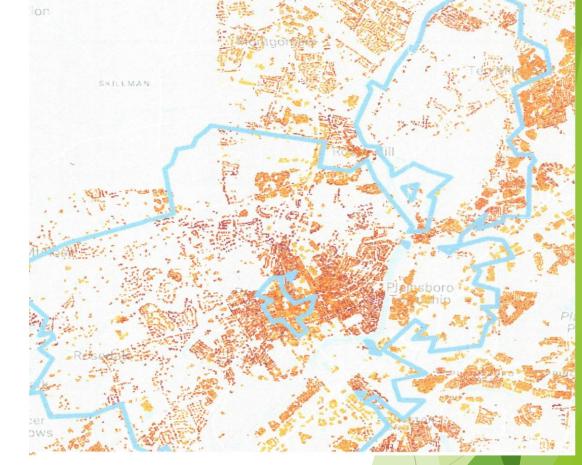
5 best solar estimators & calculators

•Max Kazakov

- Jan 31, 2021
 - 3 min read
- 1. <u>Google Project Sunroof</u> (<1 min to estimate)
- 2. <u>PV Watts</u> (<1 min to estimate)

coperniq.io

- 3. <u>EnergySage</u> (<1 min to estimate)
- 4. <u>Solar.com</u> (3 min to estimate, must sign in with email)


5. <u>Sunpower</u> (3 min to estimate, must give personal info)

Copyright Michael Winka - Solar 101 Clean Energy Tools

1,427 sq ft of available roof space 1,351 hours of solar resources per year 8.5 kW solar system to produce 98% of electricity needs \$27,000 net savings over 20 years

71% of rooftop available for solar @ 75% annual needs 993 kWh/kW installed 10,100 roof 15.7 M sq ft 223MW 257,000 MWh per year 80% of Princeton total annual electricity needs

Copyright Michael Winka - Solar 101 Clean Energy Tools

NREL's solar installation model - PV WATTS http://pvwatts.nrel.gov/

http://www.njcleanenergy.com/files/file/Renewable_Programs/NJCEPPVWattsCalculat orTraining21815.pdf

Caution: Photovoltaic system performance predictions calculated by PVWatts® include assumptions many inherent and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PVWatts® inputs. For example, PV modules with better performance are not differentiated within PVWatts® from lesser performing modules. Both NREL and private companies provide more sophisticated PV modeling tools (such as the System Advisor Model at https://sam.nrel.gov) that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The PVWatts[®] Model ("Model") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department Of Energy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

AGREE то INDEMNIEY YOU DOE/NREL/ALLIANCE, AND ITS AFFILIATES, OFFICERS, AGENTS, AND AGAINST ANY CLAIM OR AND EMPLOYEES DEMAND. REASONABLE ATTORNEYS INCLUDING FEES, RELATED TO YOUR USE, RELIANCE, OR ADOPTION OF THE MODEL FOR ANY PURPOSE WHATSOEVER. THE MODEL IS PROVIDED BY DOE/NREL/ALLIANCE 'AS IS ANY EXPRESS OR IMPLIED AND WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. IN NO EVENT SHALL DOE/NREL/ALLIANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM ANY ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE MODEL

The energy output range is based on analysis of 30 years of historical weather data, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

SOLAR RESOURCE DATA

The latitude and longitude of the solar resource data site is shown below, along with the distance between your location and the center of the site grid cell. Use this data unless you have a reason to change it.

Solar resource data site

Lat, Lng: 40.37, -74.62

0.7 mi

Resource Data Map

The blue rectangle on the map indicates the NREL National Solar Radiation Database (NSRDB) grid cell for your location. If you want to use data for a different NSRDB grid cell, double-click the map to move the rectangle. Dragging the rectangle will not move it.

If your location is outside the NSRDB area, the map shows pins for the nearest alternate data sites instead of a rectangle: Click a pin to choose the site you want to use.

SYSTEM INFO

Modify the inputs below to run the simulation.

DC System Size (kW):	7	
Module Type:	Standard	
Array Type:	Fixed (open rack)	
System Losses (%):	14.08	Loss Calculator
Tilt (deg):	20	
Azimuth (deg):	180	

Advanced Parameters

RESTORE DEFAULTS

Draw Your System

Click below to customize your system on a map. (optional)

SYSTEM INFO

Modify the inputs below to run the simulation.

DC System Size (kW):

On the map below, click the corners of the desired system. Note that the roof tilt and azimuth cannot be automatic imagery, and consequently the estimated system capacity may not reflect what is actually possible.

Array Type:

Module Type:

System Losses (%):

Tilt (deg):

Azimuth (deg):

Advanced Paramete

System Capacity:

NREL's solar installation model - PV WATTS

http://pvwatts.nrel.gov/

NJCEP

http://www.njcleanenergy.com/files/file/Renewable_Programs/NJCEPPVWattsCalculator Training21815.pdf

DC System Size (kW): 7 Module Type: Standard Array Type: Fixed (open rack) System Losses (%): 14 Tilt (deg): 20 Azimuth (deg): 180 Draw Your System - customize your system on a map. (optional) Average Cost of Electricity Purchased from Utility (\$/kWh): 0.165/ kWh

4/20/2022

Per PVWatts a 7 kW solar system facing south with a 20° slope

	Month	Solar Radiation (kWh / m2 / day)	AC Energy(kWh)	Value(\$)
	January	3.01	540	89
	February	3.97	624	103
	March	4.86	805	133
	April	5.56	869	143
	Мау	5.68	898	148
	June	6.19	930	154
	July	6.35	975	161
	August	5.94	902	149
	September	5.12	780	129
	October	4.01	660	109
	November	3.39	554	91
C	December	2.69	472	78
Copyright	Annual	4.73	9,009	\$ 1,487

This presentation is for a single family home that has a rooftop that is not fully shaded by trees or another building You may be able to install a ground mounted system **Not a historical designated home**

If you live in a condo development – Check with the condo board

If you live in a multifamily home or do not have access to the Roof space – explore **community solar** or buy electricity that is generated with solar via Class I RECs.

https://njcleanenergy.com/renewable-energy/programs/community-solar

This presentation is for a single family home Why not commercial buildings

Residential electric customers pay one fix energy rate set as cents per kWh (\$/kWh)

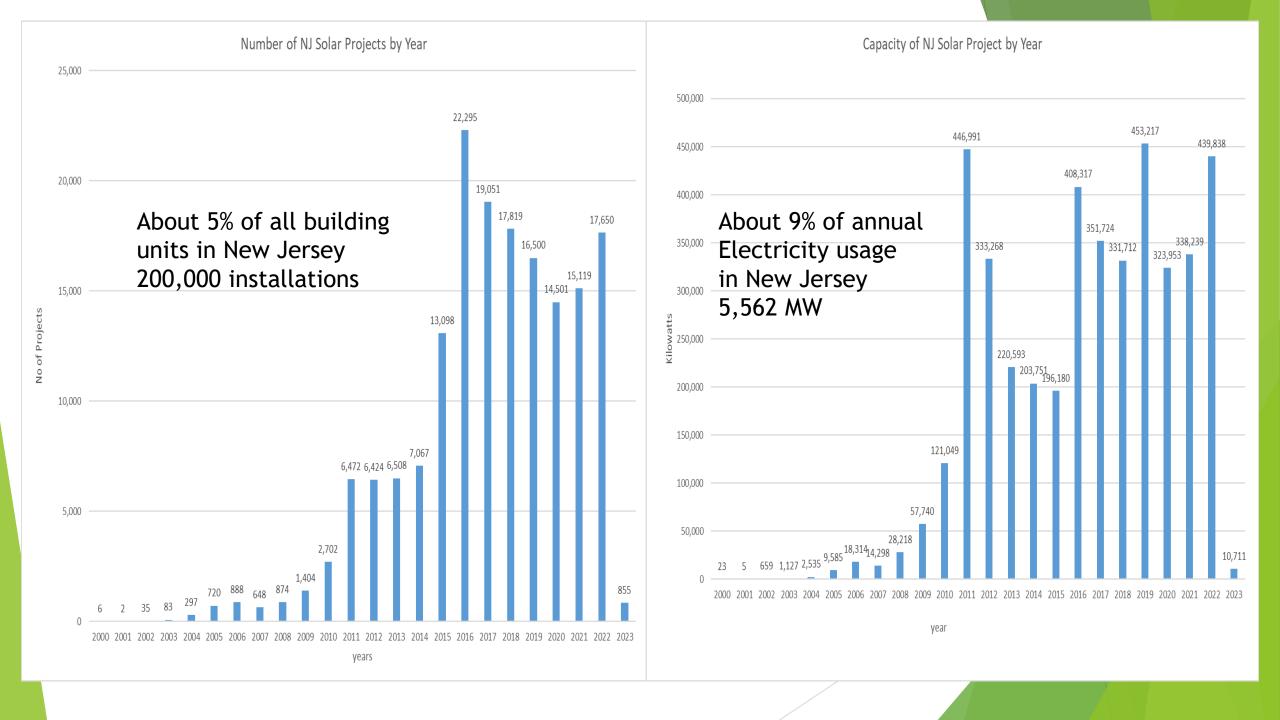
Commercial customers pay two rates

- 1. The energy charge \$ per kWh
- The demand charge \$ per kW which is based on the customers highest electricity usage
 Solar net metering tariff only applies to the energy rate \$/kWh not the demand charge \$/kW

Some basic terms

Kilowatt-hour (kW-h) - Amount of electric energy

Kilowatt (kW) – Amount of power (energy/time – kW-h/h)


Capacity or installed capacity

Capacity Factor – how long you have sun

1000 watts (w) = 1 kilowatt (kW)

1000 kW = 1 megawatt (MW)

If someone used 10 – 100 w lightbulbs for one hour They would use 1 kWh of electric energy at \$0.19/kWh A 14 W LED used for 7.5 hours = 1 kWh or 71 14 w - 1 hr

First things First – You may need zoning approval You <u>will</u> need Building construction approval Potentially historic site approval Utility interconnection approval BPU approval for SREC II

Reach out to the zoning/code office Reach out to PSE&G Interconnection (IX)

https://nj.pseg.com/saveenergyandmoney/solarandrenewableenergy/applicationprocess

Reach out to BPU to register for SuSi credits

https://njcleanenergy.com/renewable-energy/programs/susi-program

Copyright Michael Winka - Solar 101 Clean Energy Tools

First things First

Energy efficiency – Can lower your installed cost and payback time

Your solar capacity/energy for interconnection (IX) is limited to your historical electric usage per net metered tariff (NM)

Your NM usage gets set to 0 annually – For excess or surplus electricity you get paid at the wholesale rate (\$0.02 per kWh) For any underage you pay at the retail rate You get to set this date

First things First

The age of your roof ? Does it need replacement? Can it support the solar panels (2-4 #/ft2) panel weight – 30 to 50# per panel Maybe insulate the roof ? Reduce heat gain and loss Warranty for the roof ? –Call the Roofing contractor

Do you need Insurance? - Call your insurance company Are there tax issues? – Call your tax accountant

Solar PV on your roof is exempt from property tax increase Solar PV in New Jersey is exempt from NJ sales tax

First things First Warranties

To get The NJBPU solar incentive SREC II NJBPU requires

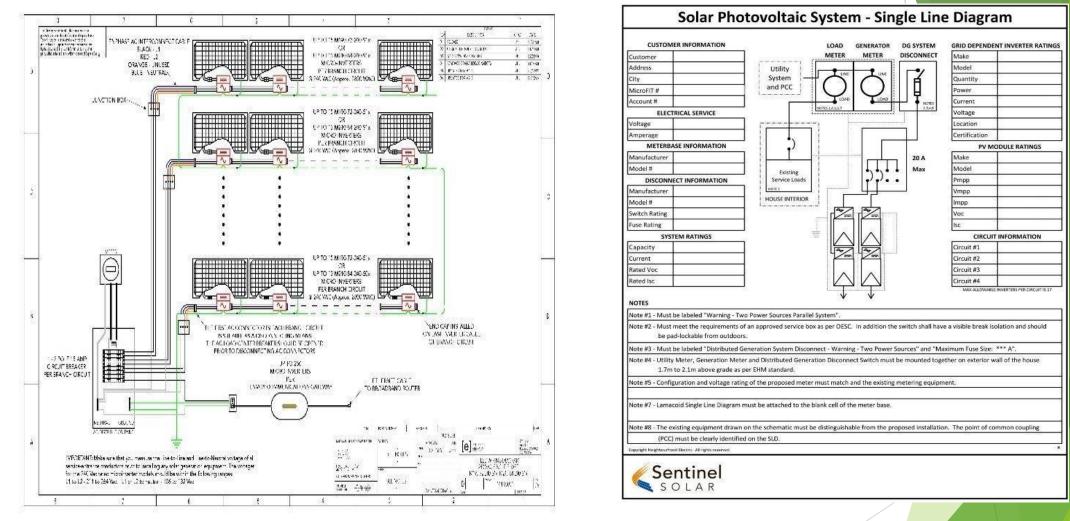
Systems must be covered by a full (not "limited") fiveyear warranty and any manufacturers' warranties on specific components. Coverage must include all parts and labor, plus the cost of removing, shipping and reinstalling or replacing a defective component.

First things First

The system must be installed by a licensed electrician

https://www.njconsumeraffairs.gov/elec/Pages/default.aspx

The system must be installed by a licensed Home Improvement Contractor (HIC)


https://www.njconsumeraffairs.gov/hic/Pages/applications.aspx

The North American Board of Certified Energy Practitioners (NABCEP) is a nationallyrecognized, independent, voluntary certification program for photovoltaic (PV) and solarheating system installers,

https://www.nabcep.org/resource/certification-handbook/

Copyright Michael Winka - Solar 101 Clean Energy Tools

Single one line drawing – Building permit

https://www.123zeroenergy.com/free-solar-line-drawings.html

Copyright Michael Winka - Solar 101 Clean Energy Tools

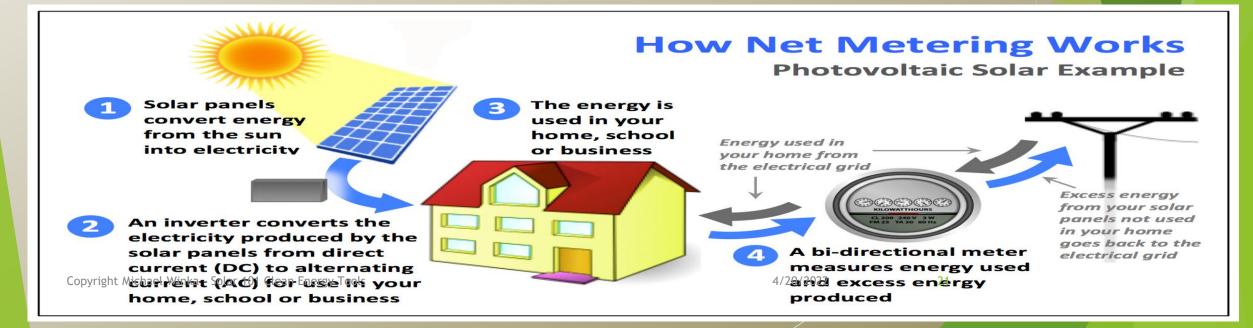
4	/	2	0	/	2	0	2	2

First things First You may need to upgrade your electric panel

100 Amps

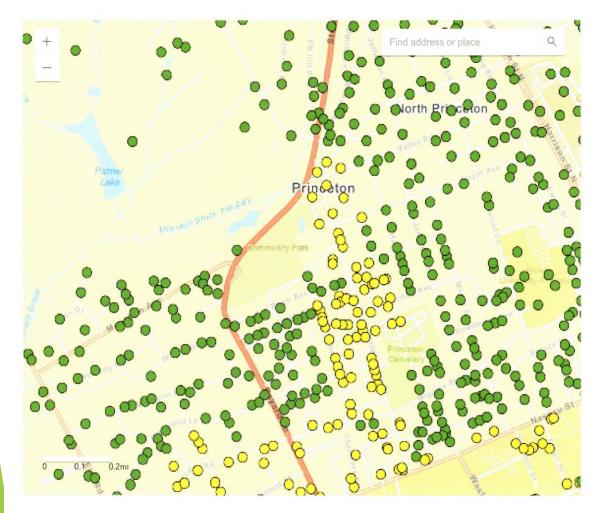
200 or 400 Amps

Costs range from \$1,500 to \$3,000 + depending on site conditions If you have an underground service it could cost upwards of \$109,000 There is a 30% federal tax credit 1/1/23 to 12/31/32 Electric Utility - make ready incentives


PSE&G Interconnection (IX) Process for Solar Net Metering (NM)

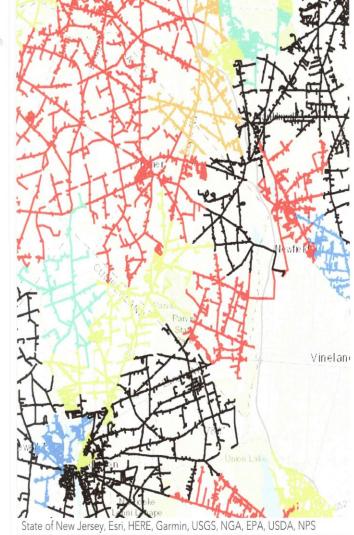
To connect your PV solar system to the PSE&G electric grid is a 2 step process.

- Step 1: Preliminary Solar Project Approval Phase
- Step 2: Construction and Final Approval Phase Approval to Energize
- Level 1 invertor based 10 kW or less


Level 2 and 3 invertor based greater than 10 kW

Solar Power Suitability Map - hosting capacity Solar Power Suitability Map - PSE&G (pseg.com)

Legend


An Exelon Company

Distribution Feeder Hosting Capacity

PHI defines large DER systems by feeder primary voltage class;

4-13.8kV: 250kW and greater 23-25kV: 500kW and greater 33-34.5kV: 1MW and greater

Feeder restrictions can be confirmed via the Restriction Map.

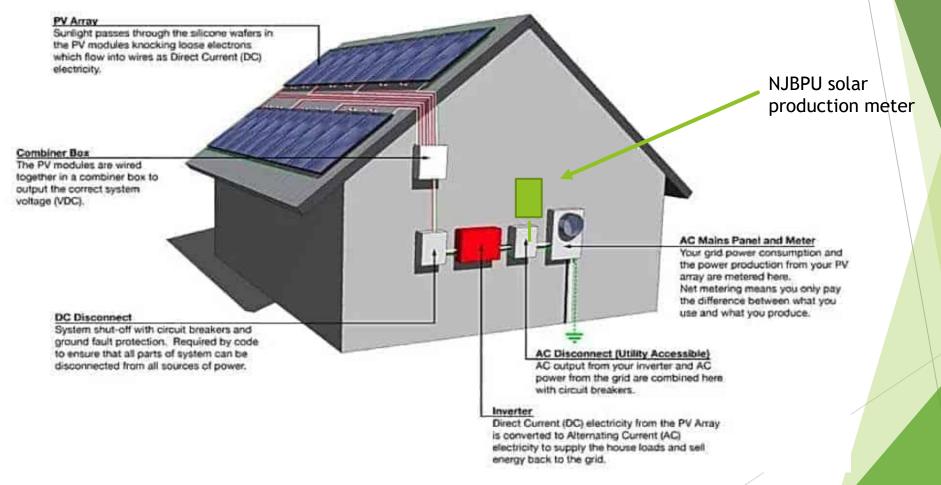
The technological, legal, and regulatory considerations that apply t constantly evolving. The map(s) are for illustrative purposes only. A

Addition information on NJBPU interconnection and net metering requirement and Utility contacts

NJ BPU Solar Metering Requirement

https://www.njcleanenergy.com/renewable-energy/programs/meteringrequirements

NJBPU Production Meter Requirements for Solar Projects (SRECs)


https://www.njcleanenergy.com/renewable-energy/programs/meteringrequirements/production-meter-requirements-solar-projects-srecs

NJBPU Net Metering and Interconnection

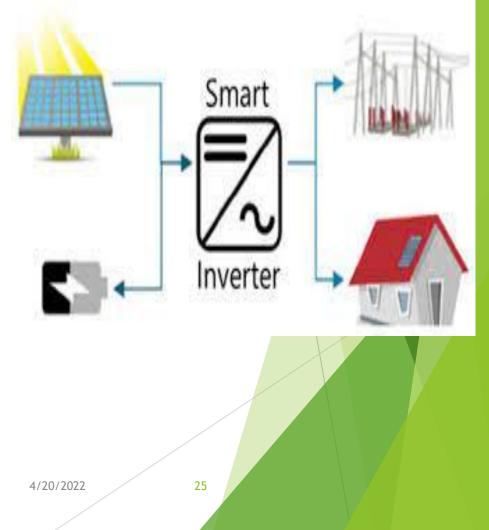
https://www.njcleanenergy.com/renewable-energy/programs/net-metering-andinterconnection

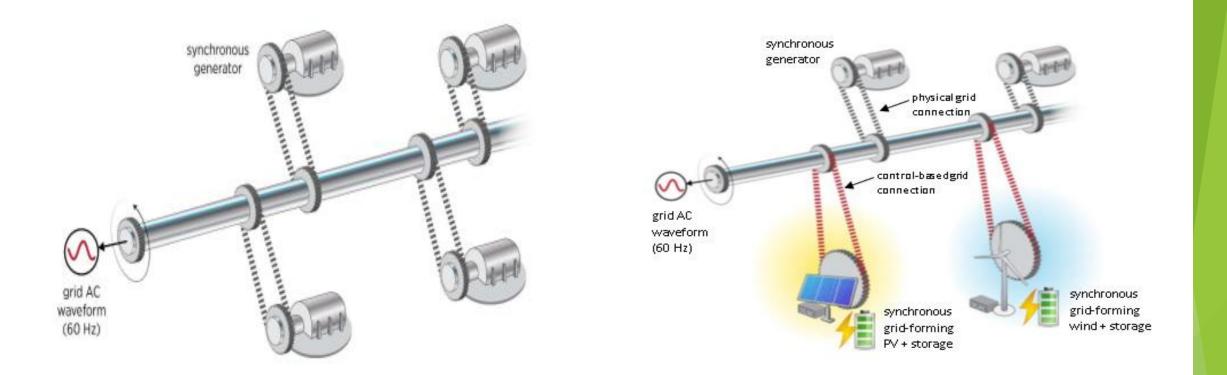
Utility Interconnection and hosting capacity maps contacts https://www.njcleanenergy.com/renewable-energy/programs/net-metering-andinterconnection/interconnection-forms

Basics of a solar system - panels, racking, inverter and meter Interconnection IX is how you communicate to the grid and Net Metering is the actual words – the energy feed to the grid

4/20/2022

Grid tied inverters – outage

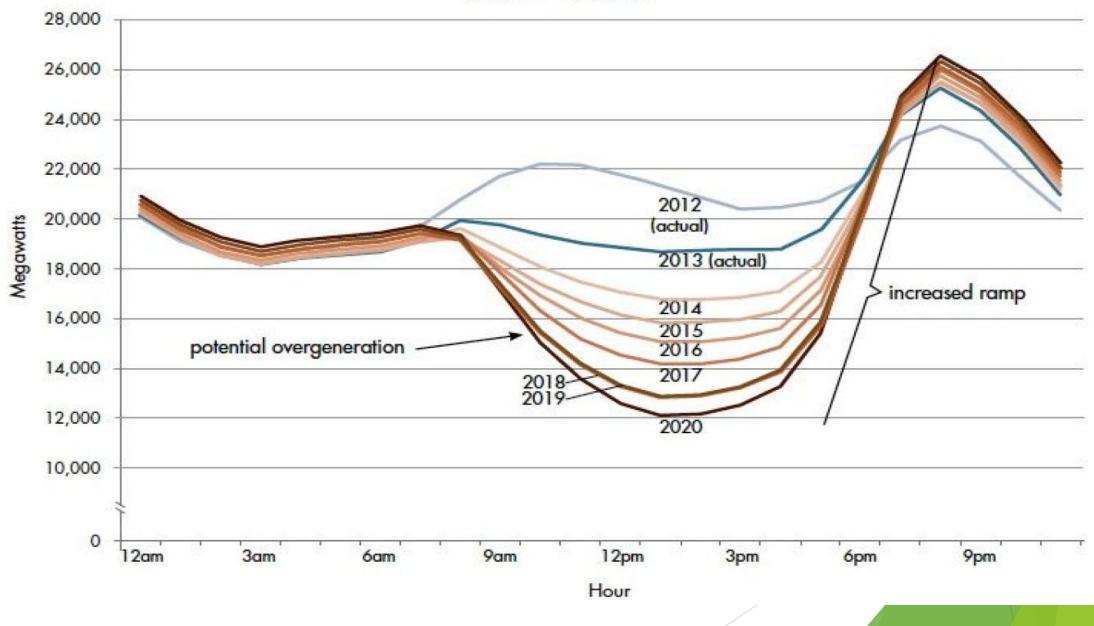

If there is an outage on the line your grid tied inverter will Shut down as a safety issue


New smart inverters can "ride – through" any minor Transient issues on the grid

Current – load following or grid following Inverter It just follows what the grid is doing

To get to 100% clean electricity by 2035 Inverters have to be Load leading or grid forming inverters that add grid performance Voltage regulation and frequency regulation

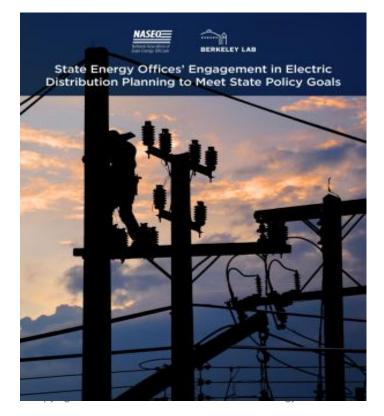
So essential the whole grid needs to be upgraded


The concept of synchronous generators working together in an electrical grid. Image: National Renewable Energy Laboratory (NREL).

So essential the whole grid needs to be upgraded Do you want to pay for Load or grid forming inverters or SMR/clean firm or both ?

Copyright Michael Winka - Solar 101 Clean Energy Tools

4/20/2022

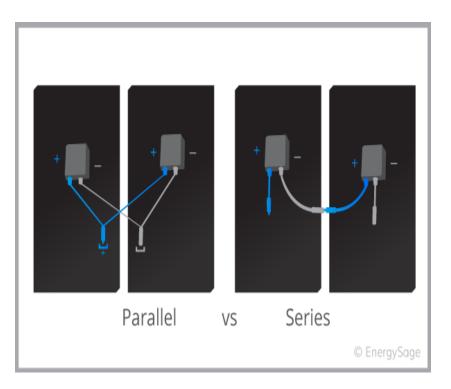

Net load - March 31

С

To address these changes in the grid More variable inverter-based generation Increased electrification - increasing load and shifting to a winter peak If we electrify Buildings and Transportation sector we will double electricity but zero out gasoline and fossil heating fuels

The solution is Integrated Distribution Planning The 2019 EMP required the utilities to do IDP 5 years later - They have not done so - yet -

Integrated Distribution Planning


August 2016

Prepared for the Mininesota Public Utilities Conversion

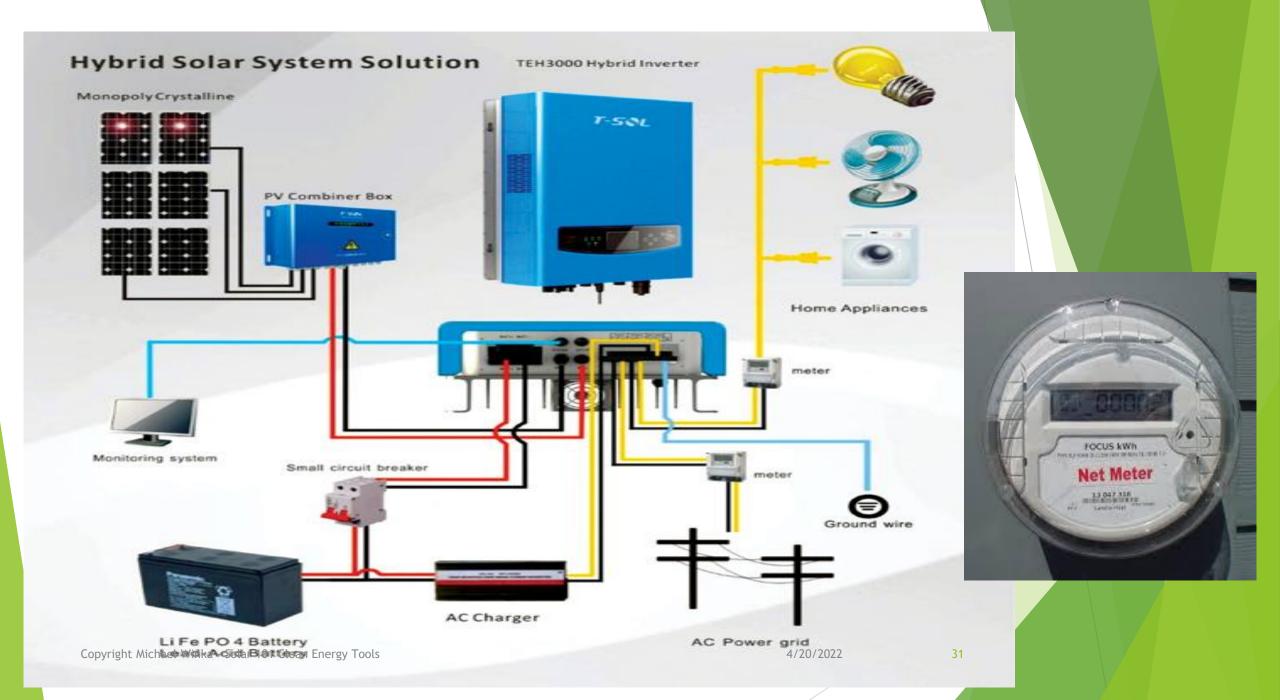
28

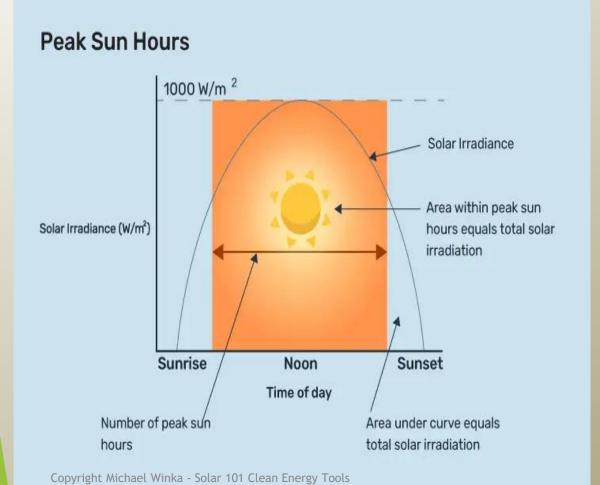
IC

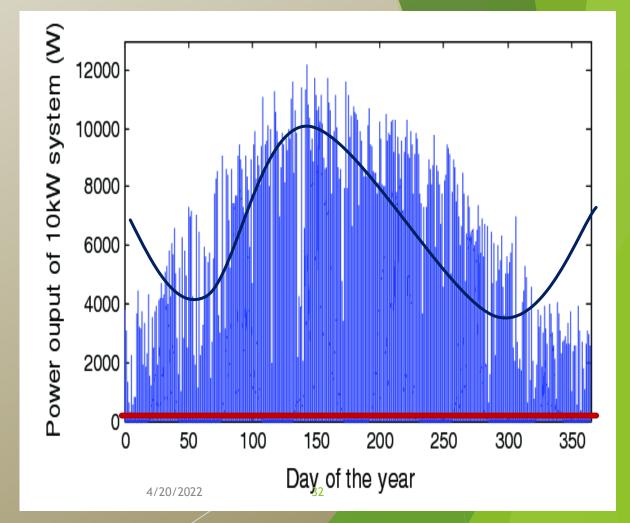
MC-4 connectors

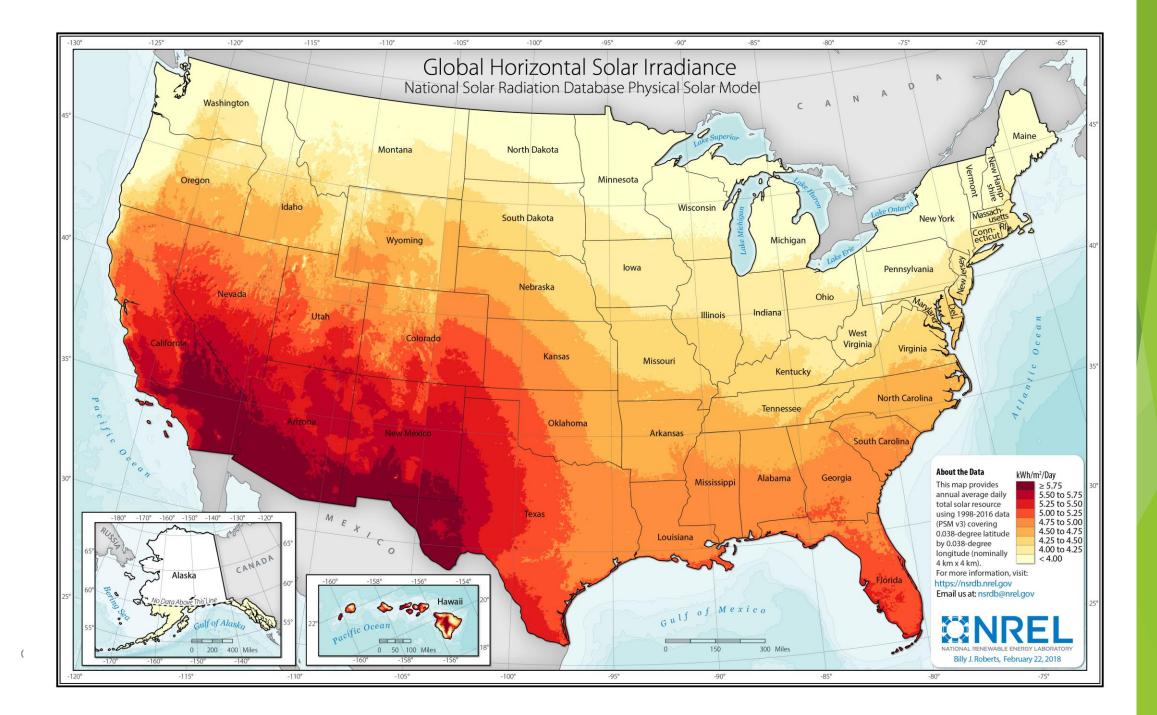
https://news.energysage.com/solar -panels-series-vs-parallel/

solar-extension-cables.html


Surge protection Fuses Circuit Breakers Over Current Protection Back Flow Protection Ground


A solar panel combiner box is used to combine several solar panels or strings of panels into a common bus. It is basically a junction box for the types of wiring used in PV systems.


Copyright Michael Winka - Solar 101 Clean Energy Tools



Solar energy changes over the day and year and depends on the weather - design the system for the average Battery storage can extend the solar day or fill in on cloudy days

Questions?

Copyright Michael Winka - Solar 101 Clean Energy Tools

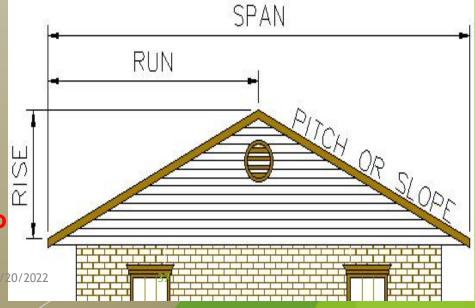
Estimating your PV solar size and cost Two methods - both get to the same answer

Calculate the size in kW that can fit on your roof Calculate the amount of energy that system can generate Determine the amount of electricity you use monthly/yearly Calculate the size in kW you need based on electricity use Determine any EE measures to reduce electricity use Calculate costs of your system Calculate the total revenues of your system Calculate simple payback of your system Decide how to purchase/finance your system

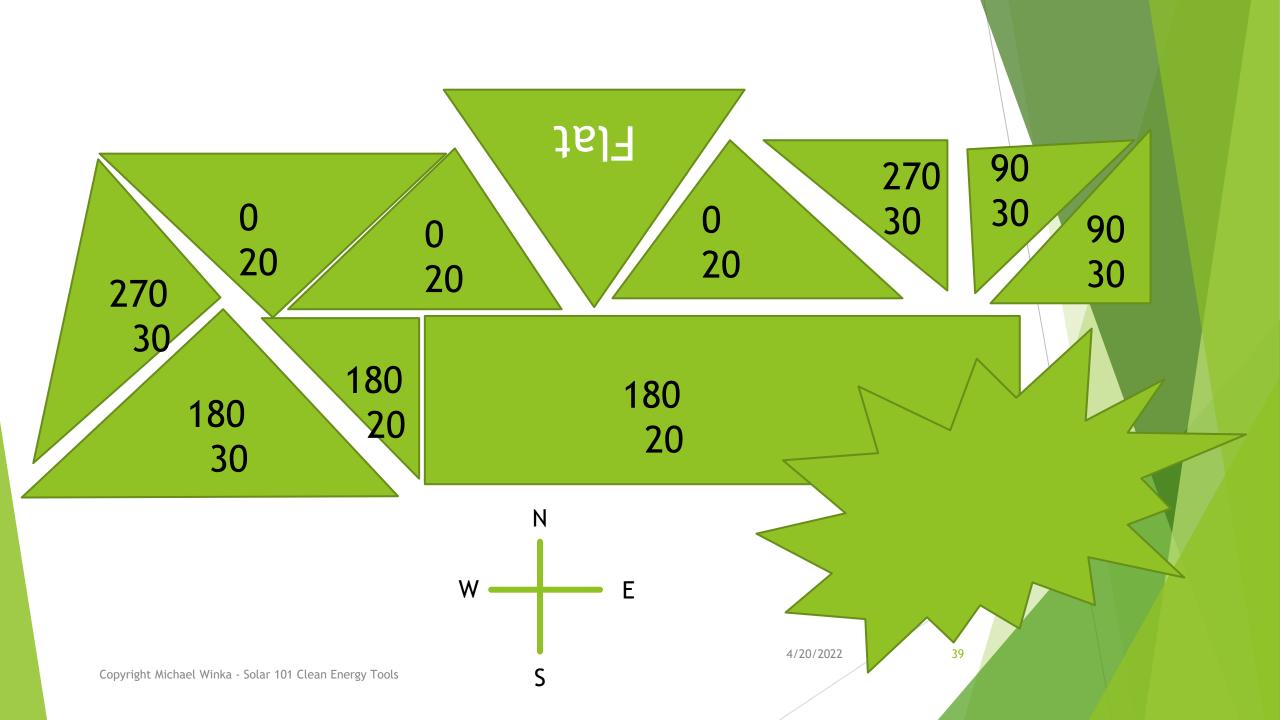
All basically rough estimates

4/20/2022

Calculating the size of your system on your roof - kilowatt (kW)

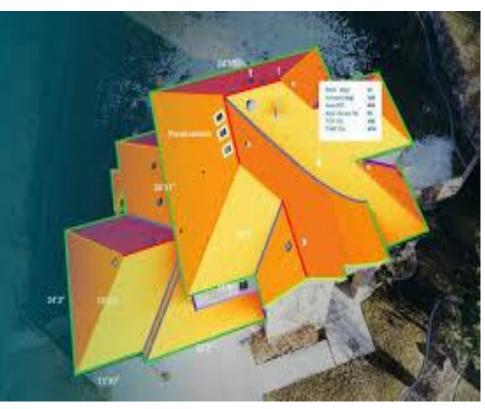

true N Go to Google Maps is your friend 0 or 360° Calculate the size of the roof Your smartphone has a compass W- 270° Azimuth with southern exposure 180° with south west exposure 225° S -180° with south eastern exposure 135°

Geometry and estimating - There's an app for that

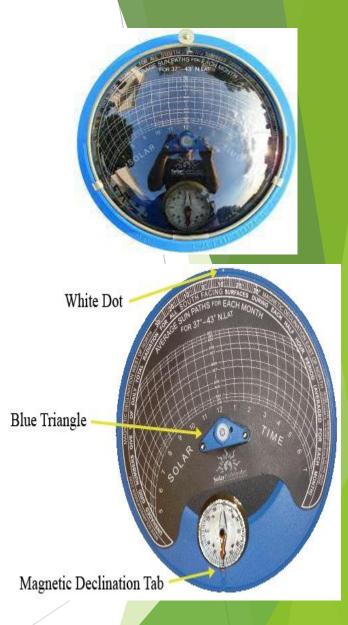

Now you know why you learned geometry

Find the **area** of the roof Area of a Rectangle or Square = $L \times W$ Area of a Triangle = $\frac{1}{2}$ B X H

Find the slope or tilt of the roof Typically $4/12 = 18.4^{\circ}$ or $6/12 = 26.6^{\circ}$ Tan ⁻¹ (4/12) = Tan ⁻¹ 0.33 = 18.4^{\circ} Best tilt is when roof slope = latitude = 41° 41° sloped roof is 10/12 (58° W & 26° S)



Shading Analysis over the full year

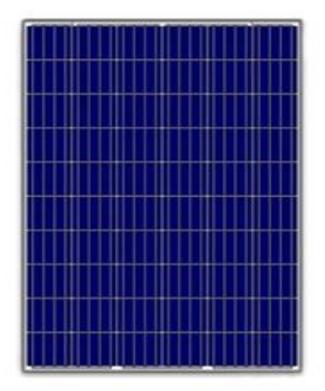


Solmetric

https://solarbuildermag.com/tag/shade-analysis/

https://helioscope.aurorasolar.com/

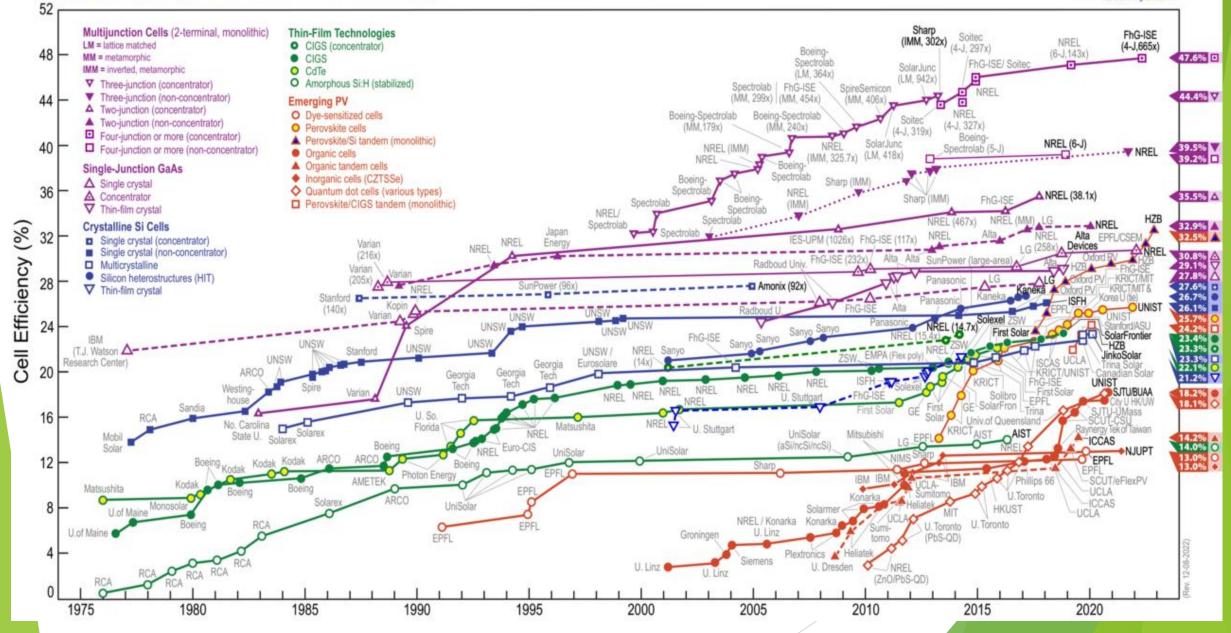
4/20/2022


Solar pathfinder

40

Types of solar panels Monocrystalline

Polycrystalline


Thin film

There are four major types of thinfilm : amorphous, cadmium telluride (CdTe), copper gallium indium diselenide (CIGS), Perovskite and organic

Check out independent review of panel manufacturers <u>https://www.solarreviews.com/solar-panel-reviews</u> Copyright Michael Winka - Solar 101 Clean thtps://news.energysage.com/best-solar-panels_complete-ranking/ <u>https://www.cleanenergyreviews.info/blog/best-solar-panels-review</u>

Best Research-Cell Efficiencies

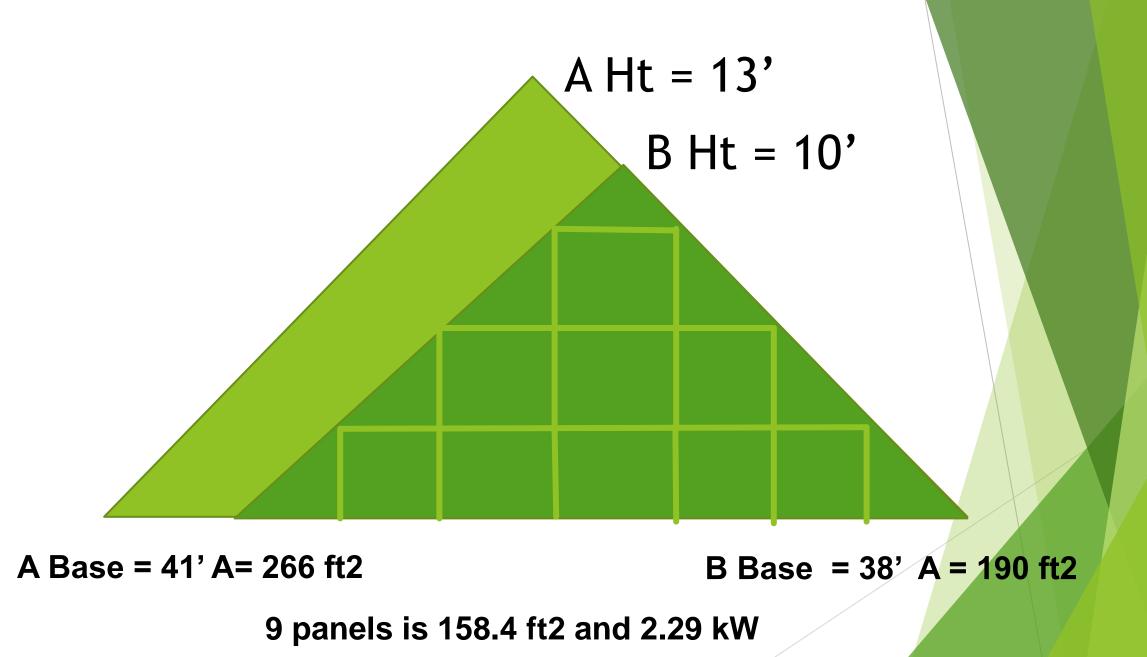
Transforming ENERGY

MAKE/ MODEL	WIDTH (IN.)	LENGTH (IN.)	WATTS	WATTS/ SQ. FT.
Kyocera Solar KU265-6ZPA	39	65.4	265	15
REC Solar REC260PE	39.02	65.55	260	14.6
SolarWorld SW280 Mono Black	39.4	65.95	280	15.5
Canadian Solar CS6P-265P	38.7	64.5	265	15.3
Yingli Energy YL260P-29b	39	65	260	14.8
AVERAGE:	39	65	265 (300)	15 (17)
Copyright Michael Winka - Solar 101 Clea	an Energy Tools		4/20/2022 43	

SOLAR PANEL MANUFACTURER	MINI	MAXI	AVER	SOLAR PANEL MANUFACTURER	MINI	MAXI	AVER
Amerisolar	240	330	285	RECOM	265	370	308
Astronergy	350	370	360	Recom Solar	310	350	330
Axitec	250	385	302	ReneSola	245	320	277
BenQ Solar (AUO)	250	295	277	Renogy Solar	250	300	268
Boviet Solar	320	340	330	RGS Energy	55	60	58
Canadian Solar	225	410	320	Risen	270	390	329
CentroSolar	250	320	278	S-Energy	255	385	334
CertainTeed Solar	70	400	308	Seraphim	255	340	294
ET Solar	255	370	306	Silfab	300	390	335
First Solar	420	460	440	Solaria	350	430	375

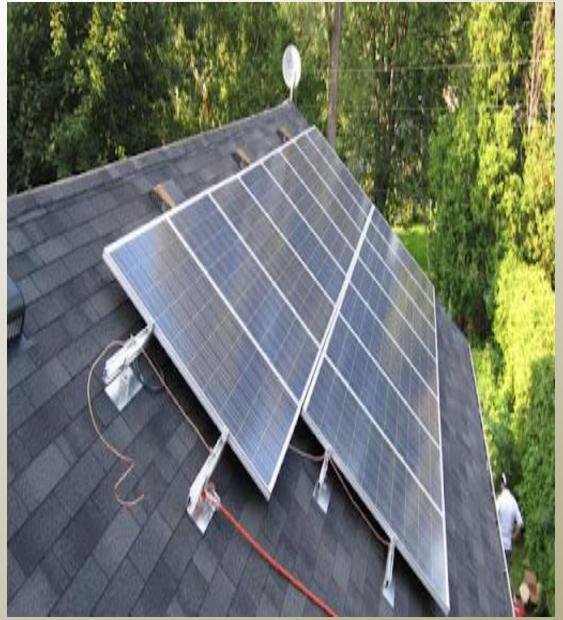
https://news.energysage.com/what-is-the-power-output-of-a-solar-panel/

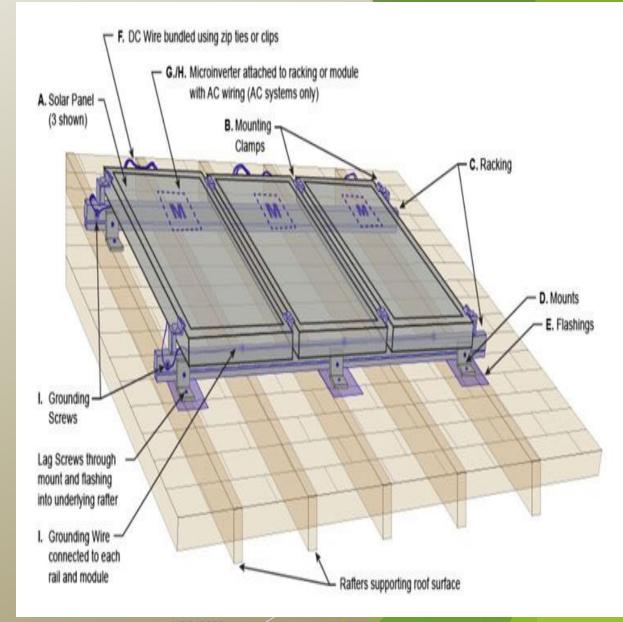
Copyright Michael Winka - Solar 101 Clean Energy Tools


4/20/2022

44

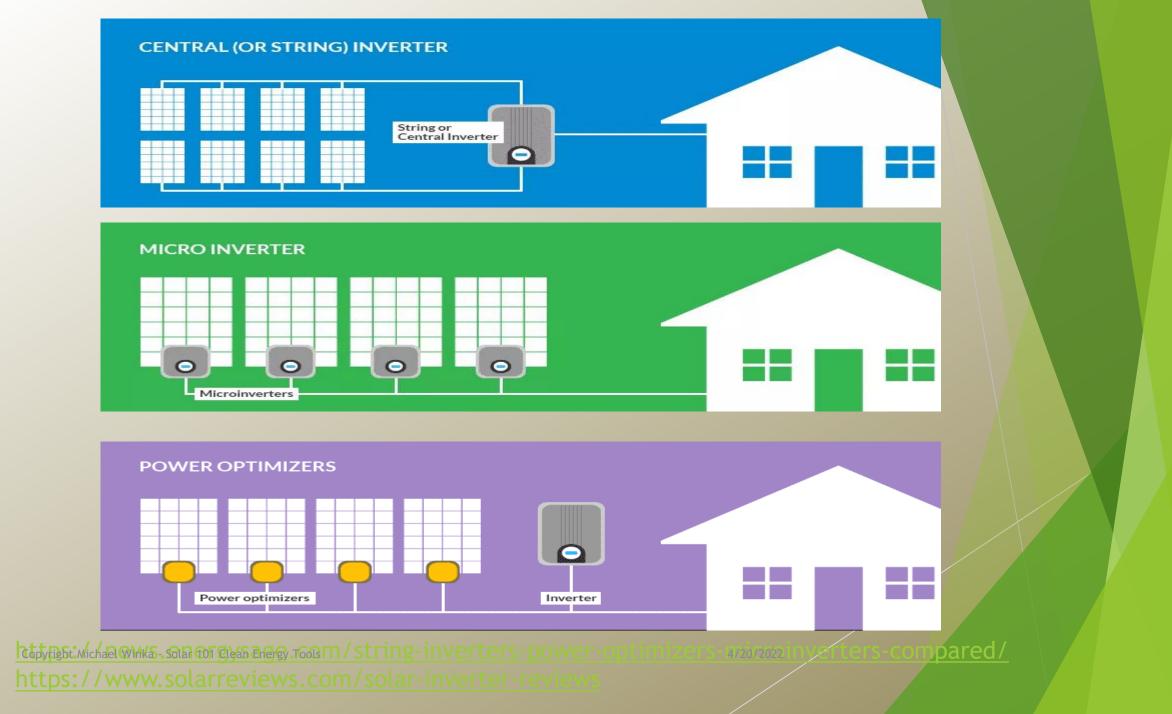
Average Solar Panel is 39" X 65" = 17.6 Ft² (39" = 3.25 Ft 65" = 5.4 ft2) 21.' 210 ft2 17'



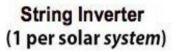

21' X 10' should fit 9 panels (265 w) = 2,385 watts or 2.39 kW 6 panels is 105.6 ft2 (265 w) = 1,590 watts or 1.59 kW

Example of panel type, cost and efficiencies - just for illustrative purposes

System size By efficiency and example of cost \$/watt	Thin Film Economy eff 6- 15% (15%) \$ 2/watt Tiles > \$	Polycrystalline Standard eff 15- 18% \$2.5/ watt	Monocrystalline Premium eff 18 - 22% \$3/watt
5 kW	306 sq ft 17.5 x 17.5	254 sq ft	224 sq ft 15 x 15
10 kW	612 sq ft	508 sq ft	448 sq ft
15 kW	918 sq ft 30 x 30	763 sq ft	672 sq ft 26 x 26


Different types of Inverters

String inverters (central inverters) connect a string of solar panels converting all DC to AC- typically centrally located near your electric panel least expensive also least efficient cannot monitor individual panels – if one panel in a string is shaded or bad it will reduce the output of the entire string- harder to expand the system


Micro-inverters connected to each solar panel – easier to expand the system. Each panel can maximize their output and not effected by shading in the string. Allows for individual panel monitoring but more difficult to replace – more efficient and most expansive

Power optimizers connected to each panel and to a string inverter. Each panel can maximize their output and not effected by shading in the string. Allows for individual panel monitoring. Allows for individual panel monitoring but more difficult to replace – more efficient and most expansive

Copyright Michael Winka - Solar 101 Clean Energy Tools https://www.cleanenergyreviews.info/blog/best-grid-connect-solar-inverters-sma-froniu solaredge-abb

Micro-inverter (1 per solar *panel*)

Solar residential installation costs by inverter type

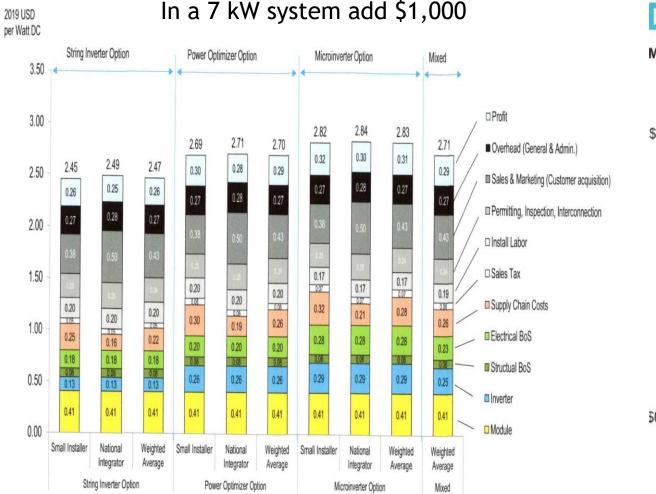
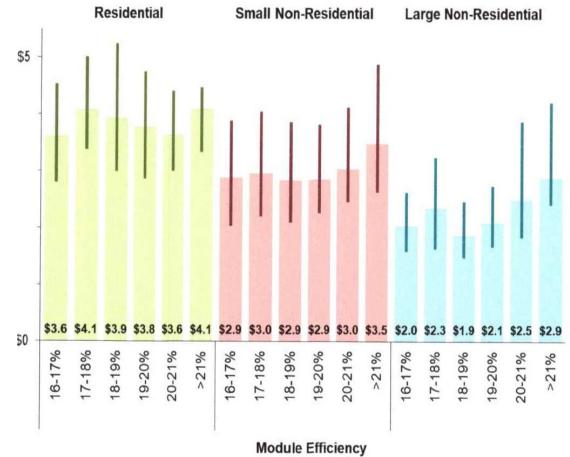



Figure 12. Q1 2020 U.S. benchmark: 7.0-kW residential PV system cost (2019 USD/Wpc)

Installed Prices by Module Efficiency for 2020 Systems

Median Installed Price and 20th/80th Percentiles (2020\$/Wpc)

53

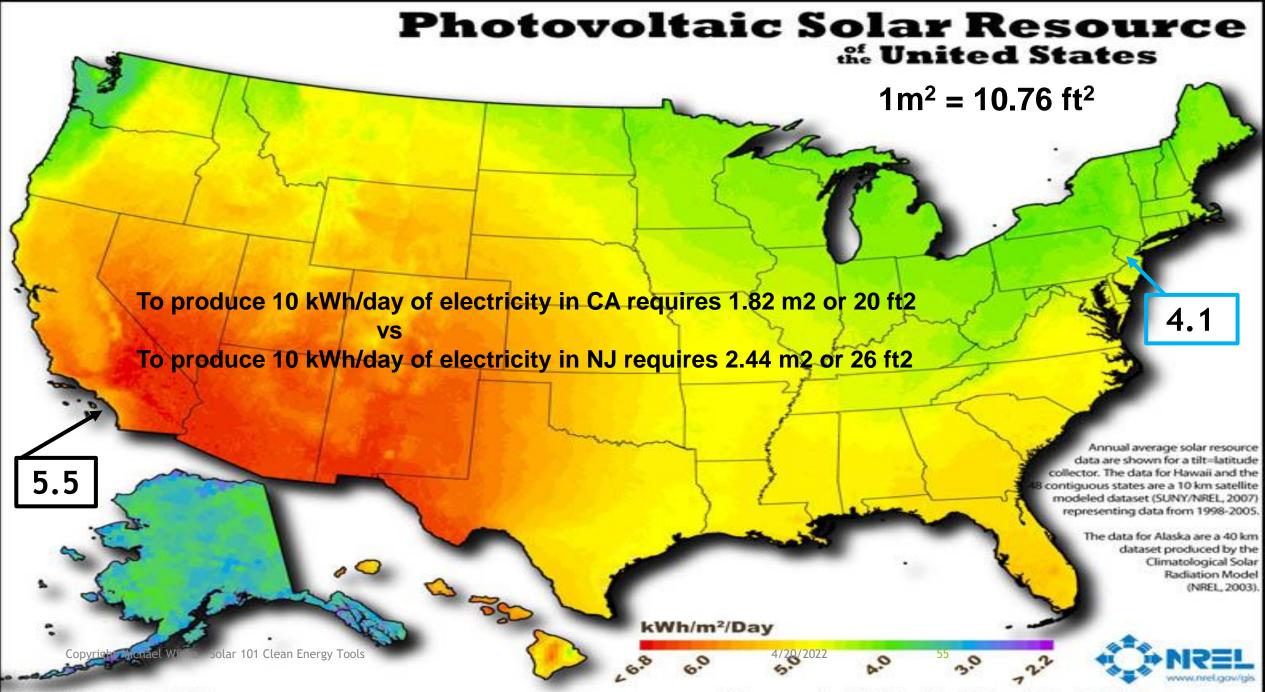
https://www.nrel.gov/docs/fy21osti????324.pdf

Area of an average State to supply the annual average electricity needs

The Average US State is 75,000 sq miles and uses 75,000,000 MWh per year

At 640 ac per sq mile 75,000 sq miles is 48,000,000 Ac

A MW of solar requires 5 Ac - A MW of solar generates 1,000 MWh per year


To produce 75,000,000 per year you need 75,000 MW of solar

At 5 Ac per MW that is 375,000 Ac

Which is 0.8% of the average state's land area

For NJ that 8% of NJ's land area which is less than the total rooftop space parking lots brownfield and fill areas in NJ without touch green open space or farmland

The average US state is 39% farmland - NJ is 16% farmland

This map was produced by the National Renewable Energy Laboratory for the U.S. Department of Energy.

Calculating the capacity (kW) that fits on you roof

Average Solar Panel is $39" \times 65" = 17.6 \text{ ft}^2$

39" = 3.25 Ft 65" = 5.4 ft2

Example Roof area = 27 x 27 = 730 sq ft

Solar area with set back = 460 ft2(21 X 21) / 17.6 ft² = 26 panels

26 panels X 265 w/ panel = 6,960 watts or 7 kW DC 26 panels X 330 w/ panel = 8,580 watts or 8.5 kW DC

Calculating the capacity (kW) that fits on your roof and the energy it may generate (kWh)

26 panels X 265 w/ panel = 6,960 watts or 7 kW DC Convert DC to AC – derated by efficiency of inverter

Rule of thumb of <u>high</u> efficiency panels

Every DC kW of solar installed = 1,200 kWh AC energy per year

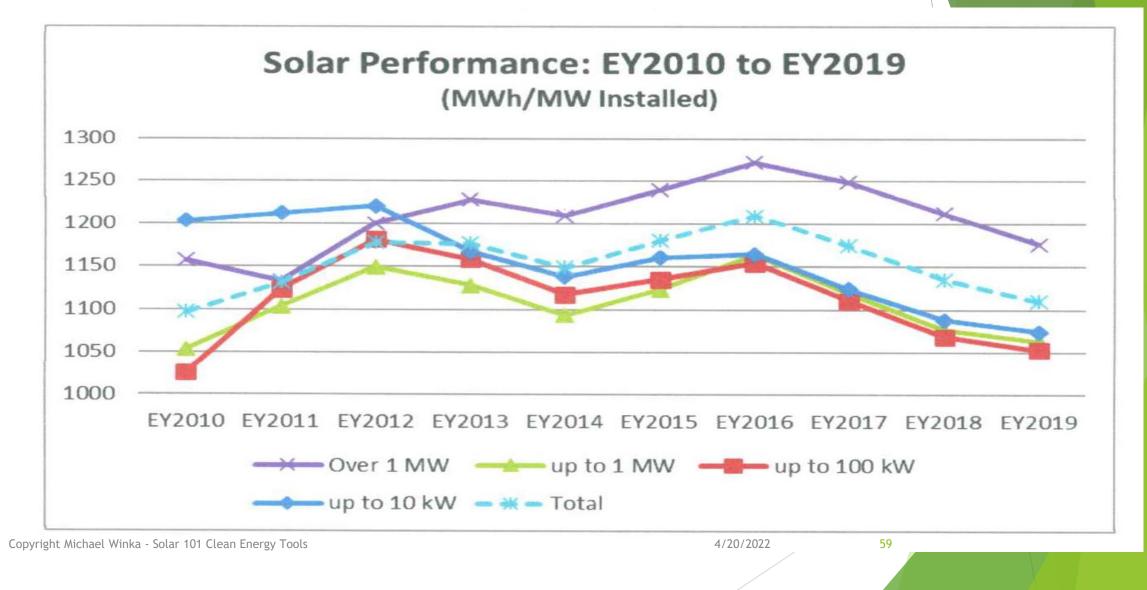
Example

7 kW x 1,100 kWh per year per kW installed = 7,700 kWh/year AC 8.5 kW x 1,200 kWh per kW per year /kW installed = 10,200 kWh/yr 7 kW x 1,200 kWh per year per kW installed = 8,400 kWh/yr

57

Panels decrease about 1% per year – 80% after 25 years

RULE OF THUMB


1,200 kilowatt-hours per year per KW installed For higher efficiency panels (1,000 to 1,100 kWh/ yr / kW installed to be conservation)

4.1 peak hours/day * 365 days/ year = 1,500 kWh/ year 1,500 kWh / year * 0.8 System eff = 1,200 kWh /kW/year

365 days per year 24 hours per days Capacity factor = how long the sun shines – losses(efficiency)

1 kW X 365 days/year X 24hours/day X 0.14 = 1,200 kWh/ kW installed/year

RULE OF THUMB PJM Generator Attributes Tracking System (GATS)

200,000 miles of transmission lines and 5.5 million miles of distribution wires

Questions?

Copyright Michael Winka - Solar 101 Clean Energy Tools

4/20/2022

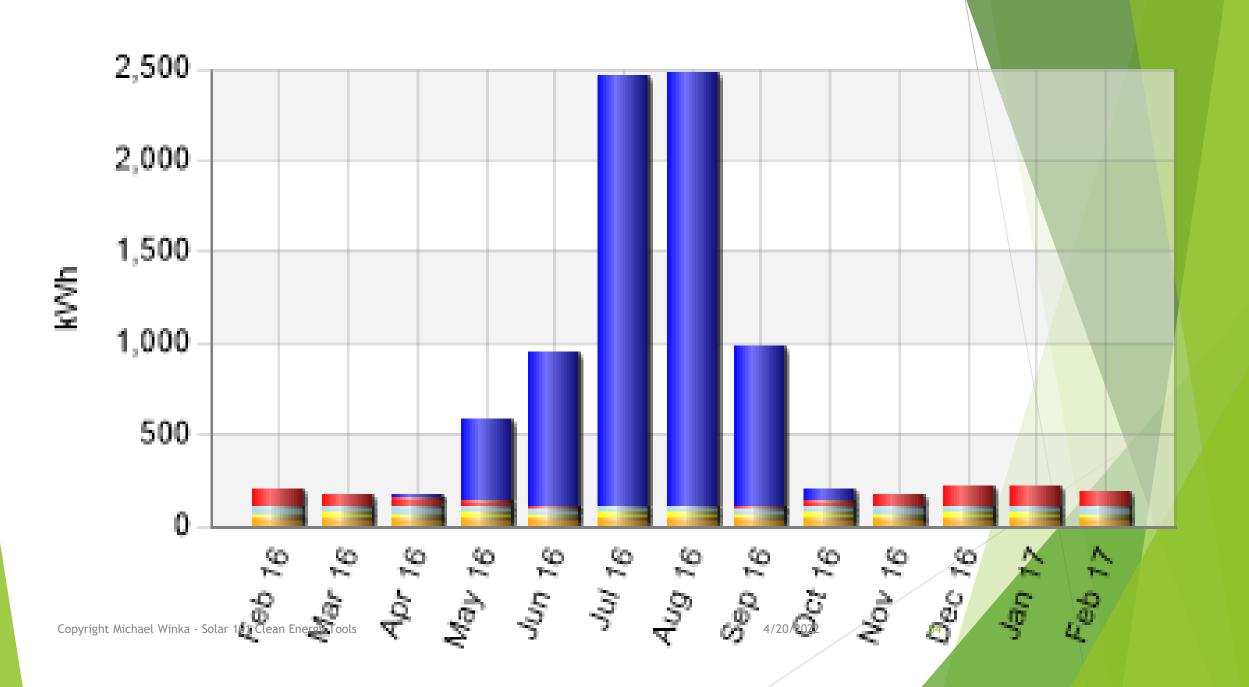
61

Determine you electricity usage kWh

NJCEP Home Energy Analysis https://njcleanenergy.com/residential/tools-andresources/home-energy-analysis/home-energy-analysis

Home Energy Calculator

https://nj.pseg.com/saveenergyandmoney/energysavingpage/h


omeenergyassessment

Register a PSE&G account https://nj.myaccount.pseg.com/user/login

https://nj.pseg.com/saveenergyandmoney/energysavingpage/homeenergyassessment

	kWh	Electric Costs	
Cooling	6,929	\$1,142	
Heating	498	\$73	
Refrigerators/F reezers	511	\$78	
Lighting	288	\$44	
Dishwasher	49	\$7	
Clothes Washer	28	\$4	
Clothes Dryer	469	\$72	
Elec. Base Charge	N/A	\$29	
Total Per Year	8,771	\$1,450	
Average Per Month	731	\$121	

8,771 kWh per year / 1,200 kWh /kW install = 7.31 kW

NREL's solar installation model - PV WATTS http://pvwatts.nrel.gov/

http://www.njcleanenergy.com/files/file/Renewable_Programs/NJCEPPVWattsCalculat orTraining21815.pdf

Caution: Photovoltaic system performance predictions calculated by PVWatts® include assumptions many inherent and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PVWatts® inputs. For example, PV modules with better performance are not differentiated within PVWatts® from lesser performing modules. Both NREL and private companies provide more sophisticated PV modeling tools (such as the System Advisor Model at https://sam.nrel.gov) that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The PVWatts[®] Model ("Model") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department Of Energy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

AGREE то INDEMNIEY YOU DOE/NREL/ALLIANCE, AND ITS AFFILIATES, OFFICERS, AGENTS, AND AGAINST ANY CLAIM OR AND EMPLOYEES DEMAND. REASONABLE ATTORNEYS INCLUDING FEES, RELATED TO YOUR USE, RELIANCE, OR ADOPTION OF THE MODEL FOR ANY PURPOSE WHATSOEVER. THE MODEL IS PROVIDED BY DOE/NREL/ALLIANCE 'AS IS ANY EXPRESS OR IMPLIED AND WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. IN NO EVENT SHALL DOE/NREL/ALLIANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM ANY ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE MODEL

The energy output range is based on analysis of 30 years of historical weather data, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

SOLAR RESOURCE DATA

The latitude and longitude of the solar resource data site is shown below, along with the distance between your location and the center of the site grid cell. Use this data unless you have a reason to change it.

Solar resource data site

Lat, Lng: 40.37, -74.62

0.7 mi

Resource Data Map

The blue rectangle on the map indicates the NREL National Solar Radiation Database (NSRDB) grid cell for your location. If you want to use data for a different NSRDB grid cell, double-click the map to move the rectangle. Dragging the rectangle will not move it.

If your location is outside the NSRDB area, the map shows pins for the nearest alternate data sites instead of a rectangle: Click a pin to choose the site you want to use.

SYSTEM INFO

Modify the inputs below to run the simulation.

DC System Size (kW):	7	
Module Type:	Standard	
Array Type:	Fixed (open rack)	
System Losses (%):	14.08	Loss Calculator
Tilt (deg):	20	
Azimuth (deg):	180	

Advanced Parameters

RESTORE DEFAULTS

Draw Your System

Click below to customize your system on a map. (optional)

SYSTEM INFO

Modify the inputs below to run the simulation.

DC System Size (kW):

On the map below, click the corners of the desired system. Note that the roof tilt and azimuth cannot be automatic imagery, and consequently the estimated system capacity may not reflect what is actually possible.

Array Type:

Module Type:

System Losses (%):

Tilt (deg):

Azimuth (deg):

Advanced Paramete

System Capacity:

NREL's solar installation model - PV WATTS

http://pvwatts.nrel.gov/

NJCEP

http://www.njcleanenergy.com/files/file/Renewable_Programs/NJCEPPVWattsCalculator Training21815.pdf

DC System Size (kW): 7 Module Type: Standard Array Type: Fixed (open rack) System Losses (%): 14 Tilt (deg): 20 Azimuth (deg): 180 Draw Your System - customize your system on a map. (optional) Average Cost of Electricity Purchased from Utility (\$/kWh): 0.165/ kWh

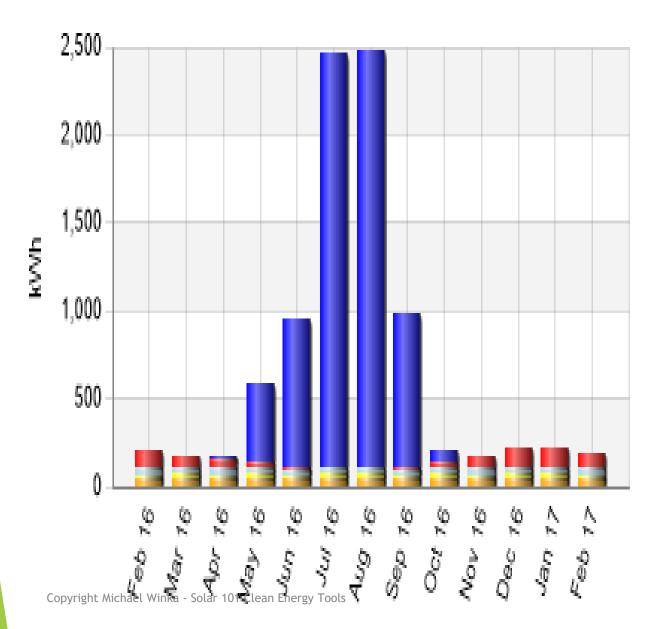
Per PVWatts a 7 kW solar system facing south with a 20° slope

	Month	Solar Radiation (kWh / m2 / day)	AC Energy(kWh)	Value(\$)
	January	3.01	540	89
	February	3.97	624	103
	March	4.86	805	133
	April	5.56	869	143
	Мау	5.68	898	148
	June	6.19	930	154
	July	6.35	975	161
	August	5.94	902	149
	September	5.12	780	129
	October	4.01	660	109
	November	3.39	554	91
C	December	2.69	472	78
Copyright	Annual	4.73	9,009	\$ 1,487

NREL's solar installation model - PV WATTS <u>http://pvwatts.nrel.gov/</u>

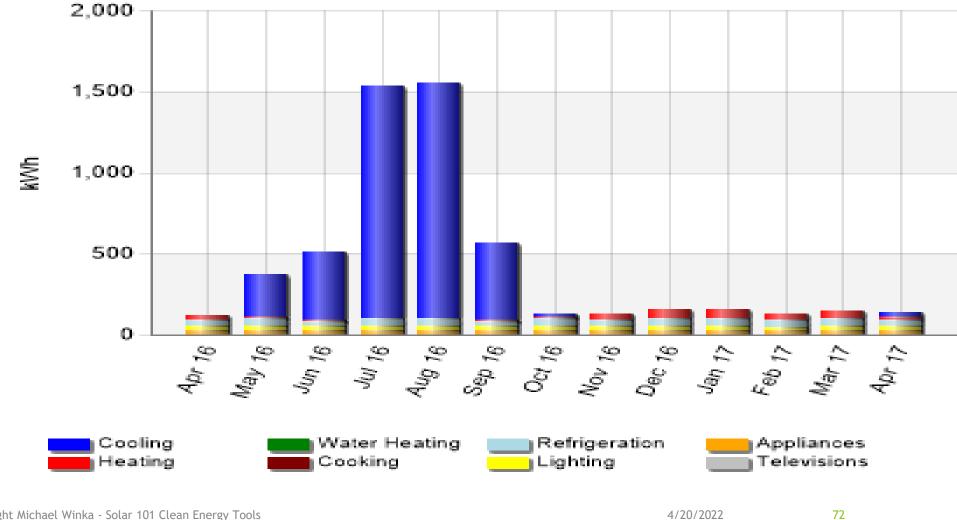
Month	Solar Radiation(kWh / m2 / day)	AC Energy(kWh)	Value(\$)
January	2.31	405	73
February	3.25	505	91
March	4.32	714	128
April	5.28	824	148
Мау	5.70	897	161
June	6.29	940	169
July	6.38	974	175
August	5.73	868	156
September	4.65	707	127
October	3.39	554	100
November	2.62	420	76
December	2.00	340	61
Annual	4.33	8,148	\$ 1,465
Copyright	: Michael Winka - Sol	ar 101 Clean Energy T	ools

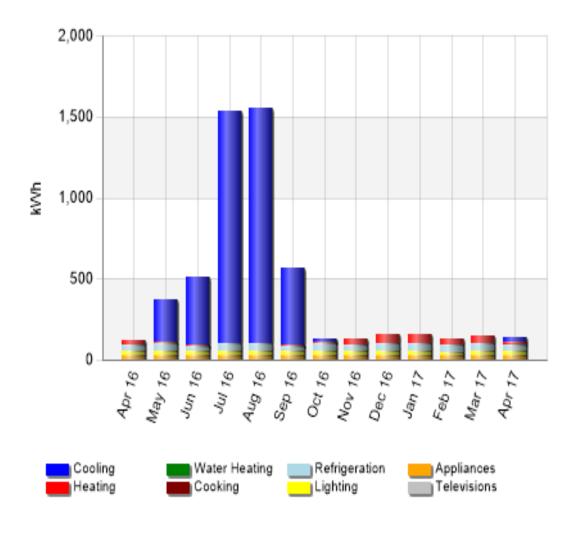
Month	Solar Radiation(kWh / m2 / day)	AC Energy(kWh)	Value(\$)
January	3.68	649	117
February	4.58	709	128
March	5.16	841	151
April	5.48	846	152
Мау	5.24	821	148
June	5.61	837	151
July	5.83	887	160
August	5.74	862	155
September	5.32	798	144
October	4.49	726	131
November	4.11	661	119
December	3.37	582	105
Annual	4.88	9,219	\$ 1,661
	1/20/2022	69	

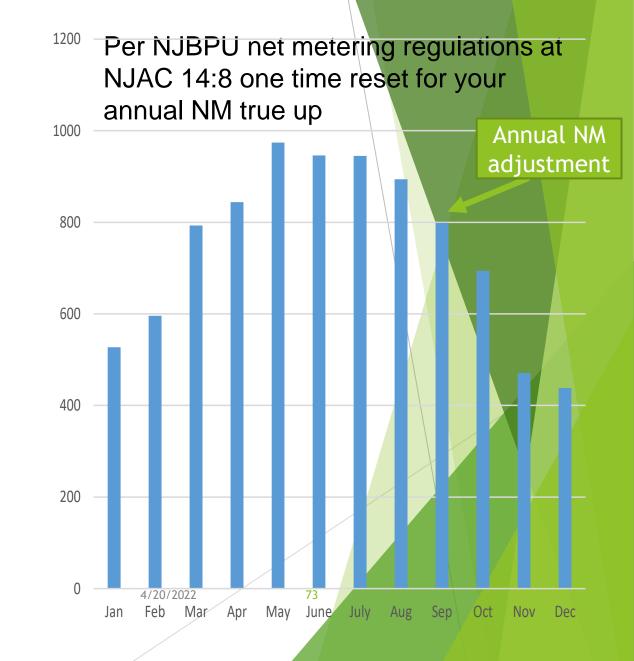

7 KW south facing at 40° tilt - 8.4 years

7 KW south facing at 0° tilt - SPB - 9.6 years

onth	Solar Radiation(kWh / m2 / day)	AC Energy(kWh)	Energy Value(\$)	Month	Solar Radiation(kWh / m2 / day)	AC Energy(kWh)	Energy Value(\$)	Month	Solar Radiation(kWh / m2 / day)	AC Energy(kWh)	
January	1.03	172	31	January	1.87	346	62	January	1.97	363	
February	1.75	272	49	February	2.68	450	81	February	2.66	443	
March	2.79	493	89	March	3.62	662	119	March	3.59	653	
April	3.92	668	120	April	4.48	768	138	April	4.45	762	
Мау	5.03	866	156	Мау	5.40	928	167	Мау	5.38	923	
June	5.45	888	160	June	5.73	929	167	June	5.63	910	
July	5.20	863	155	July	5.45	901	162	July	5.52	913	
August	4.51	742	134	August	5.03	827	149	August	5.00	822	
September	3.37	539	97	September	4.19	684	123	September	4.17	678	
October	2.09	340	61	October	3.10	537	97	October	3.06	526	
November	1.15	184	33	November	2.01	347	62	November	1.86	318	
December	0.85	143	26	December	1.61	291	52	December	1.60	288	
Annual	3.10	6,170	\$ 1,111	Annual	3.76	7,670	\$ 1,379	Annual	3.74	7,599	


7 KW north facing at 20° tilt -WCopyrit Michael inka - Solar 101 Clean Energy Tools SPB = 12.6 years -


7 KW east facing at 20° tilt _{4/20/2022} SPB = 10.1 years 7 KW west facing at 20° tilt SPB = 8 years10.2


Month	Solar Radiation(kWh / m2 / day)	AC Energy(kWh)	Value(\$)
January	3.01	540	89
February	3.97	624	103
March	4.86	805	133
April	5.56	869	143
Мау	5.68	898	148
June	6.19	930	154
July	6.35	975	161
August	5.94	902	149
September	5.12	780	129
October	4.01	660	109
November	3.39	554	91
December	2.69	472	78
Annual	4.73	9,009	\$ 1,487

July and August electricity usage = 1,500 KWh/month more than the PV system generates but net over the Year it is 0

Copyright Michael Winka - Solar 101 Clean Energy Tools

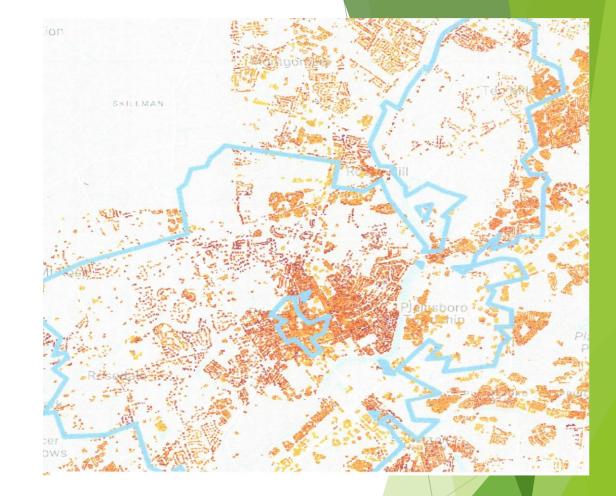
5 best solar estimators & calculators

•Max Kazakov

<u>coperniq.io</u>

• Jan 31, 2021

4/20/2022


- 3 min read
- 1. <u>Google Project Sunroof</u> (<1 min to estimate)
- 2. <u>PV Watts</u> (<1 min to estimate)
- 3. <u>EnergySage</u> (<1 min to estimate)
- 4. <u>Solar.com</u> (3 min to estimate, must sign in with email)

5. <u>Sunpower</u> (3 min to estimate, must give personal info)

1,427 sq ft of available roof space 1,351 hours of solar resources per year 8.5 kW solar system to produce 98% of electricity needs \$27,000 net savings over 20 years

71% of rooftop available for solar @ 75% annual needs 993 kWh/kW installed 10,100 roof 15.7 M sq ft 223MW 257,000 MWh per year 80% of Princeton total annual electricity needs

Copyright Michael Winka - Solar 101 Clean Energy Tools

Calculate your simple payback period (SPP)

The payback period is the amount of time it will take to recoup the initial cost of an investment, or to reach its break-even point.

SPP = Total cost Total annual revenues /year

1 / SPP = Return on Investment (ROI)

= years

Calculate your simple payback

Calculate your cost (capital cost - incentives) Example 7 kW X \$3 per watt installed = \$21,000 7 kW x \$3,000/ kW Sales tax exemption and Property tax exemption

30% federal Investment tax credit ITC = \$6,300

\$14,700 is the net cost of the 7 kW solar PV system after accounting for your ITC

4/20/2022

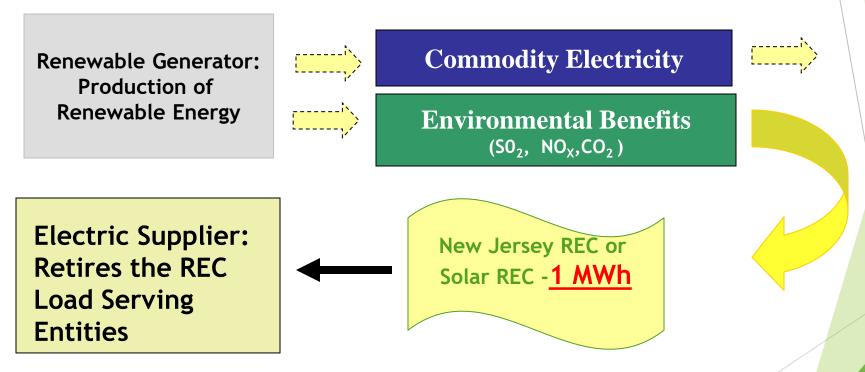
77

Tracking the Sun – LBL- NREL USDOE energy labs <u>https://emp.lbl.gov/tracking-the-sun</u>

Copyright Michael Winka - Solar 101 Clean Energy Tools

Calculate your simple payback Calculate your annual revenues Example

Avoided electricity generated 9,000 kWh per year Annual value for NM/IX at \$ 0.1988/kWh (per EIA) = \$1,789 per year


Solar Renewable Energy Credit (SREC) = 1 MWh or 1,000 kWh SREC II generated = 9 per year Successor Solar Incentive (SuSi) at \$85 per MWh = \$765

Total revenues = \$1,789 + \$756 = \$2,545/year

Copyright Michael Winka - Solar 101 Clean Energy Tools

New Jersey

Renewable Energy Certificates (RECs)

Certificates represent the environmental benefits and other attributes associated with electricity generated from a renewable energy generator. May be Copyright Michael Winka - Solar 101 Clean Energy Tools Tools of underlying electricity. 4/20/2022 79 Calculate your simple payback The New Jersey Solar Incentive is now a feed-in-tariff

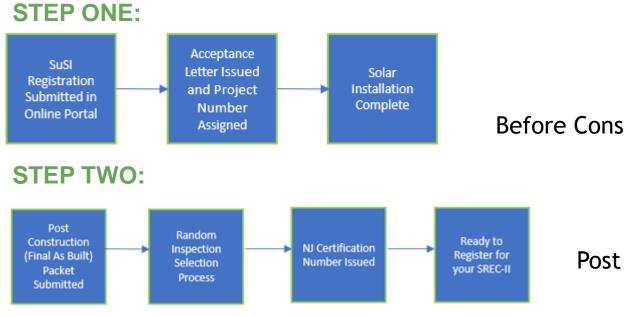
Successor Solar Incentive (SuSI) - SREC II The incentive is administratively determined (ADI)

Value of SuSI is fixed based on blocks Residential IX - \$85 per MWh or per SREC II Qualification life = 15 year 7kW = 9,000 kWh or 9 MWh = 9 SREC II @ \$85/SREC = \$765 / year

Total net cost for 7 kW is \$14,700 15 years of SREC at \$85/MWh is \$11,475 REVISED Energy Year 2023 ADI Capacity Blocks by Market Segments

Market Segments	System Size	MW (dc) Capacity Blocks
Net-Metered Residential	All Sizes	250
Net Metered Non- Residential	All sizes at or below 5 MW (dc)	257.836
Community Solar including LMI and Non-LMI	All sizes at or below 5 MW (dc)	150
Interim Subsection (t) Grid	CLOSED	5.19

https://njcleanenergy.com/renewa ble-energy/programs/susiprogram/adi-program


Market Segments	System Size MW (dc)	Incentive Values (\$/SREC-II)	*Public Entities ((\$20 Adder)
Net-Metered Residential	All Sizes	\$85	N/A
Small Net-Metered Non-Residential located on Rooftop, Carport, Canopy and Floating Solar	Projects smaller than 1 MW (dc)	\$110	\$120
Small Net Metered Non-Residential Ground Mount	Projects smaller than 1 MW (dc)	\$90	\$105
Large Net Metered Non- Residential ocated on Rooftop, Carport, Canopy and Floating Solar	Projects 1 MW to 5 MW (dc)	\$100	\$110
Large Net Metered Non-Residential Ground Mount	Projects 1 MW to 5 MW (dc)	\$85	\$100
Community Solar LMI	Up to 5 MW (dc)	\$90	N/A
Community Solar Non-LMI	Up to 5 MW (dc)	\$70	N/A
**Interim Subsection (t) Grid	All Sizes	\$100	N/A

REVISED ADI Incentive (SREC-IIs) Values Per Market Segment

Effective March 13, 2023

Market Segments	System Size MW (dc)	Current SREC-II Value	REVISED SREC-II Value	Public Entities (\$20 Adder)
Net-Metered Residential	All Sizes	\$90	\$85	N/A
Small Net-Metered Non-Residential located on Rooftop, Carport, Canopy and Floating Solar	Projects smaller than 1 MW (dc)	\$100	\$110	\$130
Small Net Metered Non-Residential Ground Mount	Projects smaller than 1 MW (dc)	\$85	\$90	\$110
Large Net Metered Non-Residential located on Rooftop, Carport, Canopy and Floating Solar	Projects 1 MW to 5 MW (dc)	\$90	\$100	\$120
Large Net Metered Non-Residential Ground Mount	Projects 1 MW to 5 MW (dc)	\$80	\$85	\$105
Community Solar Non-LMI	Up to 5 MW (dc)	\$70	No Change	N/A
Community Solar LMI	Up to 5 MW (dc)	\$90	No Change	N/A

The SuSI Program has a Two-Step Registration Process to get Certified:

Before Construction/installation

Post Construction

STEP THREE:

OPEN A PJM-EIS GENERATION ATTRIBUTE TRACKING SYSTEM (GATS) ACCOUNT

STEP FOUR:

OPEN A PAYMENT ACCOUNT WITH THE SREC-II ADMINISTRATOR

For any questions regarding the status of your SuSi registration, please contact, <u>NJREINFO@NJCle</u> <u>anEnergy.com</u>.

Copyright Michael Winka - Solar 101 Clean Energy Tools

4/20/2022

ADI Program Key Eligibility Requirements:

•Net-metered residential, non-residential solar facilities 5 MW (dc) or less, and community solar projects.

Projects located on property types that were previously eligible to seek conditional certification from NJBPU under Subsection (t), now be referred to as "interim Subsection (t) projects."
Solar facilities that have not yet reached commercial operation (defined as permission to operate) prior to the opening of the ADI Program.

 Solar facilities that reached commercial operation before August 28, 2021, must be granted special dispensation by NJBPU to participate in the ADI Program.

•All solar equipment must be new.

•Solar facilities connected to a distribution or transmission system owned or operated by a New Jersey public utility or local government unit.

•Solar facilities receiving incentives that are 1 MW (dc) or greater in size are subject to the Prevailing Wage Act N.J.S.A. 34:11-56.25, et seq.

Calculate your simple payback

<u>Total Capital cost - Incentives</u> Total Revenues (avoided electricity and SREC)

\$14,700 / \$2,545/year = SPP about 5.78 years or about 17% ROI

If you get a loan you need to calculate the time value of money - NPV & DCF NREL solar installation, performance cost and financing model -System Advisor Model SAM <u>https://sam.nrel.gov/</u>

Options to Purchase your solar

- 1. Pay Cash upfront
- 2. Finance through a loan 10/15 year loan
- 3. Solar Lease 15 25 year lease
- 4. Power Purchase Agreement PPA 15 25 year

Evaluate your costs and benefits within your risk profile

https://www.njcleanenergy.com/renewable-energy/tools-and-resources/ownershipfinancing-options https://www.cesa.org/wp-content/uploads/Homeowners-Guide-to-Solar-Financing.pdf

Step 6. Options to Purchase your solar

Solar Loan		Solar Lease	Power	Purchase Agreement (P	
Advantages Disadva	ntages	Advantages		Disadvantages	
Homeowner eligible to receive applicable federal Not all homeowners can and/or state tax and/or obtain a loan other incentives*		Little or no upfront cost to homeowner, ownership		Most leases restrict some property owner activities for example, new	
Homeowner eligible to receive <u>Solar Renewable</u> <u>Energy Credits</u> (SRECs),** Which can be cold	minor costs h and repair	at the end of the lea term may accrue to site host		construction that may cast shade on the system roof replacement, property sale, etc.	
which can be sold minor increase insurance cost	es in	Leasing company usu responsible for	ually		
Homeowner owns the solar system and therefore has significant ability to manage it	ay reduce	-		maintenance and repair of system (most systems	Tax incentives may not accrue to the site host
independently repay					
In most cases, lower overall cost				a PPA is in a lease you p nent and in a PPA you bu	

Copyright Michael Winka - Solar 101 Clean Energy Tools

the solar electricity at a fix rate or an with an annual escalator

Step 6. Options to Purchase your solar

Questions	Solar Lease	PPA	Solar Loan
Who buys the system?	Third-party developer	Third-party developer	Homeowner
Who owns the system?	Third-party developer	Third-party developer	Homeowner
** Who owns the SRECs?	Third-party developer	Third-party developer	Homeowner
*Who takes advantage of federal and State tax incentives?	Third-party developer	Third-party developer	Homeowner
Who is responsible for the operation and maintenance of the solar equipment?	Typically, third-party developer	Third-party developer	Homeowner-Solar equipment should have manufacturer warranty for at least five years from the date of installation
Who is responsible for damage or destruction to the solar system?	Third-party developer	Third-party developer	Homeowner
What happens if the homeowner sells the home where the solar system is located?	This should be defined in the contract agreement	This should be defined in the contract agreement	Homeowner owns the system and can leave the system in place or relocate the system to new home

https://www.njcleanenergy.com/renewable-energy/tools-and-resources/ownership-financing-options

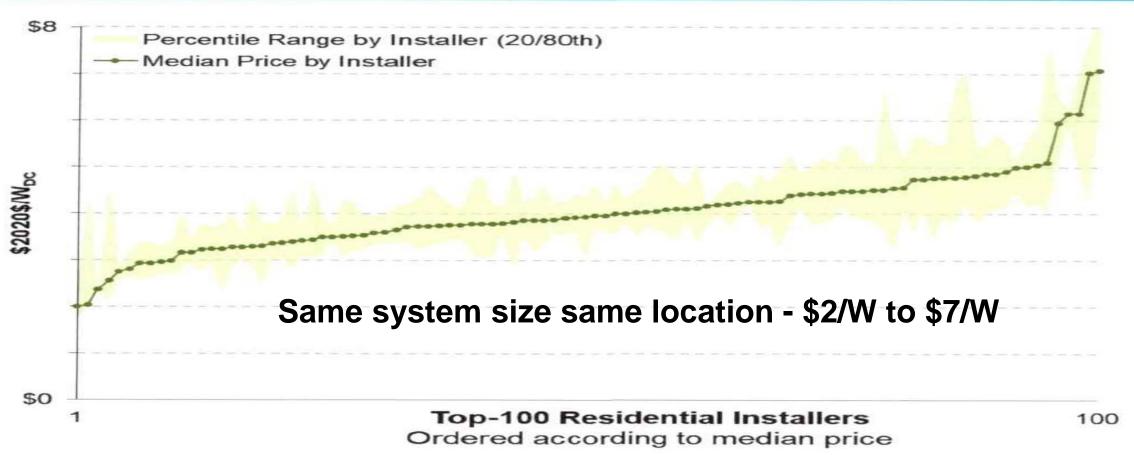
Copyright Michael Winka - Solar 101 Clean Energy Tools

4/20/2022

PAS Its Electrifying - Solar 101

Best advise – hire a reliable solar professional

NJCEP website trade ally - https://njcleanenergy.com/findavendor


https://njcleanenergy.com/renewable-energy/project-activity-reports/projectactivity-reports

Google- how to hire a solar installers Grain of salt - relatively independent

Energy Sage - <u>https://www.energysage.com/</u> Solar Review - <u>https://www.solarreviews.com/</u> Solar Power World-<u>https://www.solarenergyworld.com/</u>

Why it is important to call multiple vendors and get multiple quotes

Top-100 Host-Owned Residential Installers in 2020

Notes: Each dot represents the median installed price of an individual installer, ranked from lowest to highest, while the shaded band shows the 20th to 80th percentile range for that installer.

Copyright Michael Winka - Solar 101 Clean Energy Tools

https://www.nrel.gov/docs/fy21osti/77324.pdf

https://emp.lbl.gov/sites/default/files/2_tracking_the_ sun_2021_report.pdf

Estimating your PV solar size and cost Two methods - both get to the same answer

Calculate the size in kW that can fit on your roof Calculate the amount of energy that system can generate Determine the amount of electricity you use monthly/yearly Calculate the size in kW you need based on electricity use Determine any EE measures to reduce electricity use Calculate costs of your system Calculate the total revenues of your system Calculate simple payback of your system Decide how to purchase/finance your system

All basically rough estimates

Questions?

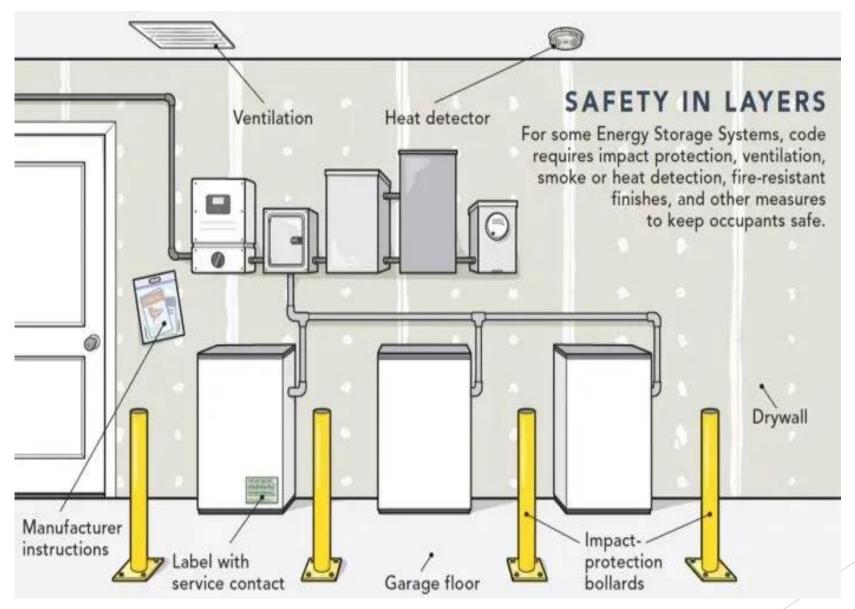
Copyright Michael Winka - Solar 101 Clean Energy Tools

Adding Storage as part of a New or Existing Solar System

What is Storage – A way to capture energy for later use Mainly electricity since oil and natural gas are already stored energy

Many ways to store energy Pump Hydro Thermal Storage Capacitor Flywheels Batteries Li ion, Pb acid, Ni-Cd, M+ hydride, Zn air, Alkaline flow batteries Li Ni Co and Li Fe PO4 wet vs dry cells vs solid state

Basically a metal + and a electrolyte -


Storage is more complex than solar

Solar is essentially plug and play

Storage – especially battery storage requires routine monitoring and maintenance to operate properly

If you are good at routine maintenance battery may be OK for you

If not you need to think about how to get the system serviced

Copyright Michael Winka - Solar 101 Clean Energy Tools

Battery Terms

Energy – kWh

Power - kW

Depth of Discharge – 100% 80-90% > 40%

Round trip efficiency (charging – discharging) – losses > 80%

Duration – 1 hour, 4 hours, 8 hours

Battery Life 8 – 10 years 6,000 - 10,000 cycles > 70% (15+ years)

Watts, Volts and Amp and Amp-hours

AC or DC coupling

Copyright Michael Winka - Solar 101 Clean Energy Tools

Do you want a integrated system or custom

https://www.cleanenergyreviews.info/battery-storage-comparison-chart

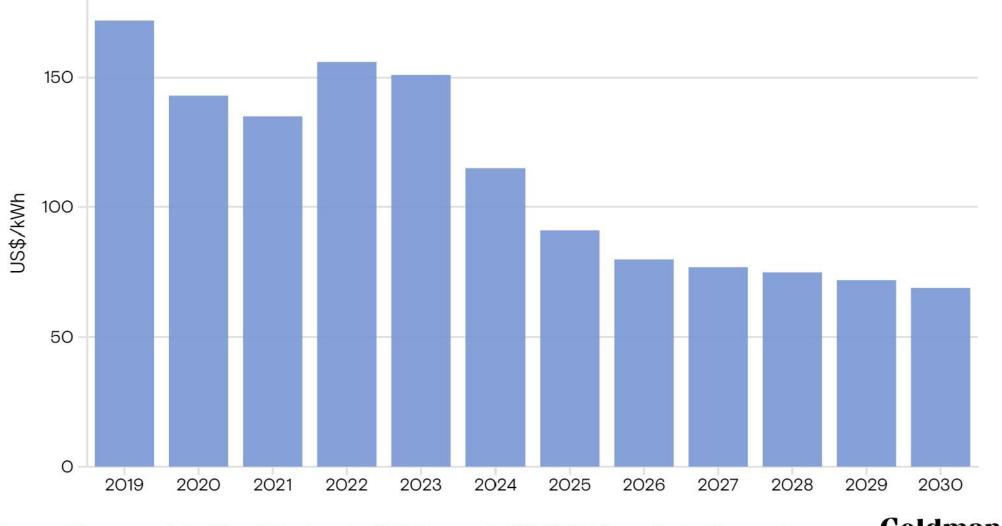
Battery Company	Price Per KWh*	Typical Battery Size**	Total Installed Cost After The Federal Tax Credit
Enphase	\$1,344/kWh	10 kWh	\$9,408
Tesla	\$1,000/kWh	13.5 kWh	\$9,450
FranklinWH	\$1,103/kWh	13.6 kWh	\$10,501
SolarEdge	\$1,683/kWh	9.7 kWh	\$11,428
Panasonic	\$1,111/kWh	9 kWh	\$6,999
EG4	\$1,049/kWh	11.44 kWh	\$8,400
SunPower	\$1,304/kWh	13 kWh	\$11,866
Growatt	\$1,289/kWh	9 kWh	\$8,121
Generac	\$1,961/kWh	9 kWh	\$12,354
HomeGrid	\$1,332/kWh	9.6 kWh	\$8,951

Cost of top 10 battery brands

*The median price per kWh of the 10 most quoted batteries on EnergySage in the first half of 2024.

**The median usable capacity of the 10 most quoted batteries on EnergySage in the second half of 2024.

Copyright Michael Winka - Solar 101 Clean Energy Tools https://www.solarreviews.com/solar-battery-reviews https://news.energysage.com/best-solar-batteries/


4/20/2022

97

https://www.energysage.com/energy-storage/how-much-do-batteries-cost/

Battery prices are forecast to fall

Global average battery pack prices

Source: Company data, Wood Mackenzie, SNE Research, BNEF, Goldman Sachs Research 2023-2030 are estimates

Battery - start small with a battery power pack

The EMP mitigation measures are not perfect Need to know the issues to pull together a "real" plan

Solar – only generates electricity when the sun is shining – less in the winter, more in the summer end of life issues – recycling/reuse

OSW – only generates electricity when the wind is blowing - more in the winter. less in the summer end of life issues – recycling/reuse

Storage – expensive, impacts in mining, lower performance in cold weather, end of life issues – recycling/reuse

EV – expensive, impacts in mining, impacts in disposal, lower performance in cold weather

Heat pumps – lower performance in cold weather, may need a backup in very cold weather

The Grid – needs to be expanded to manage double the load and inverter based

These mitigation technologies are good but not 100% and not for everyone today The key is incremental – implement where it works and build up and out Copyright Michael Winka - SL/Community Energy Plan

Transportation Sector - Going Electric

How to Change the Demand Curve for Oil and Gasoline to Prevent Future Oil pipelines Start slow and small and build into a movement Use

MM Btu is a million Btus

Used EV for under \$20,000 (+ \$2,000 - level 2 charger) 50 miles RT for 260 days (5 day work week)

An average ICE vehicle 520 gal/ yr - 60.3 MM Btus/yr -\$1560/yr. (\$3.00)

An average EV 3,900 kWh /yr - 13.3 MM Btu - \$640/yr.(\$0.14) 4.5 times less energy - 2.4 times less cost Savings \$1,124/yr. avoiding 3.74 MT of CO2

3,900 kWh / year - 3.5 kilowatts (kW) of solar @\$3/watt SPP for EV and solar 15 yrs. (ROI 6.7%) Avoiding 4.62 MT of CO2 Reducing both gasoline and natural gas demand and emissions and storage solar electricity

Building Sector - Going Electric How to Change the Demand Curve for Natural Gas to Prevent Future Natural gas pipelines Start slow and small and build into a movement

2.3T

0.5T

GWH = \$1,200

HPWH = \$2,500

Copyright Michael Winka - Solar 101 Clean Energy Tools

2,000 kWh /year = 1.5 kilowatts (kW) of solar @ \$3/W = \$3,330 HPWH + solar = 10.5 years (ROI 9.5%) Avoiding 2.3 T of CO2

3 times less energy - Avoiding **1.8** T of CO2

230 therm - 23 million Btus \$320/yr emitting

2,000 kWh 6.8 million Btus \$330 /yr emitting

Reducing natural gas demand in electric and heating sectors

A major advantage is you can store your solar electricity in the HPWH

Heat Pump Water Heater A fan pulls air through the top air filter.

- Heat in the air is absorbed by eco-friendly refrigerant inside the evaporator coil and cool (dehumidified air) is exhausted.
- Refrigerant is pumped through a compressor, which increases the temperature.
- Simultaneously the cooler water from the bottom of the tank is pumped to the top of the appliance, where it circulates.
- 6 Hot refrigerant transfers its heat to the water inside the condensor coil.
- 6 Heated water is returned back to the top of the tank.
- Condensate drain connection.
- Backup electric heating elements.

102

30% federal tax credit plus \$600 Utility EE incentive Can you electrify your home to light, heat, and cool your home and charge your EV's powered by your own fuel by 2035 ? What would it take?

Questions?

Copyright Michael Winka - Solar 101 Clean Energy Tools

Princeton Adult School - Solar 101

Thank You Michael Winka energy translator <u>mwinka@comcast.net</u>