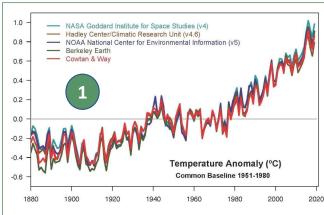
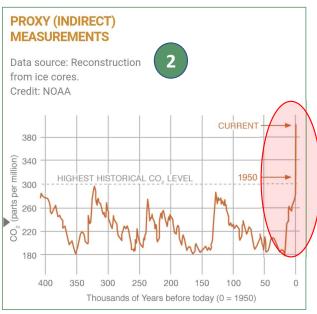
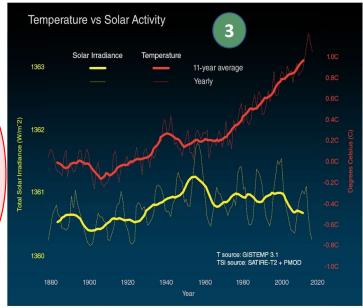


Sierra Club NJ Chapter Presentation

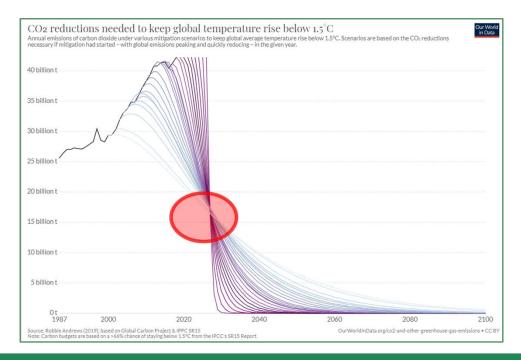
Guide Your Whole House Electrification Plan


4.18.24
Matt Kavanagh
Founder Green Insight LLC
www.greeninsight.green
Matt.Kavanagh@greeninsight.
(973) 379-0992



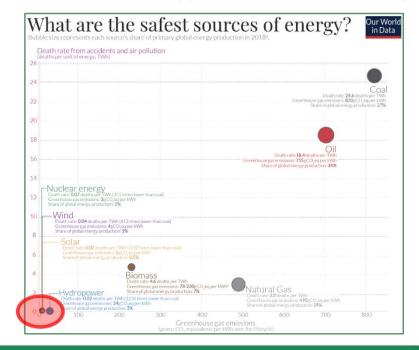

Why Decarbonize - Climate Change requires Everyone's Action Today

Temperature data showing rapid warming in the past few decades. According to NASA data, 2016 was the warmest year since 1880, continuing a long-term trend of rising global temperatures. The 10 warmest years in the 140-year record all have occurred since 2000, with the six warmest years being the six most recent years. Credit: NASA/NOAA.



- 1
- Global mean temperatures continue to raise year over year (NASA) (NJ 2x higher than average) Atmospheric CO2 is above 400 ppm (up from 280 ppm 1850s) (NOAA) (May 2022 421ppm) Anthropogenic green house gas emissions are the cause (not sun activity) (IPCC)

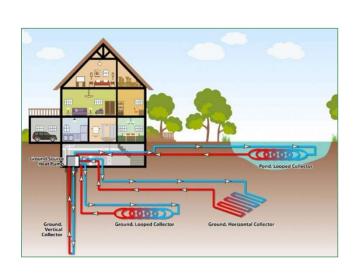
Why Decarbonize - Climate Change requires Everyone's Action Today



2027 Marks a year of inflection for the world where at least 50% CO2 Reductions are needed to keep below 1.5 C warming

Solar PV, Geothermal and Wind are:

- Cheap (levelized cost of energy winning)
- 2. Safest energy sources (see below)
- 3. Abundant (~40 min of sun = 1 Yr global electric)
- 4. Requires very little water
- 5. Affords energy freedom and resiliency


Insight

Carbon & Energy Reduction with Efficiency & Renewables

- Reduce energy demand with home energy efficiency upgrades
- 2. Offset as much electric (kWh) and heating (therms)/cooling energy (kWh) demand for home with on premises solar PV & heat pumps (air source/ground source)
- 3. Offset balance with clean renewable electric energy purchased through an aggregation program, clean 3rd party or via community solar programs

Path to Decarbonize Your Home Geothermal Ground Source Heat Pumps (GSHP) or Air Source Heat Pumps

Vertical or horizontal water loop wells act as a heat exchanger with the ground with the best thermal COP ~3-5

Ground Mount

Solar Photovoltaic (PV) Systems

Carport

Rooftop

Residential Case Studies

Kavanagh Carbon Reduction Plan & Microgrid (New Jersey)
Maryland Carbon Reduction Plan (MD)

First, what is a Microgrid?

DOE Definition

"a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid and enable it to operate in both grid-connected or island mode."

Microgrids come in all sizes

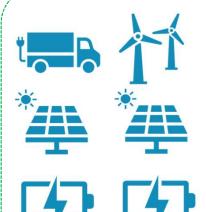
A microgrid could be a single home in island mode, or a city block or entire community. Varies by size, demand and scope depending upon the value of the resources and the economics of the infrastructure.

Interoperability with Grid

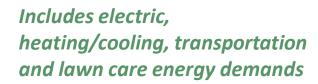
A microgrid that is well designed affords the opportunity for grid benefits in grid mode. Integrated vehicles, buildings, energy storage and distribute generation through a bidirectional interconnection allows maximum benefit. Energy storage comes in many forms.

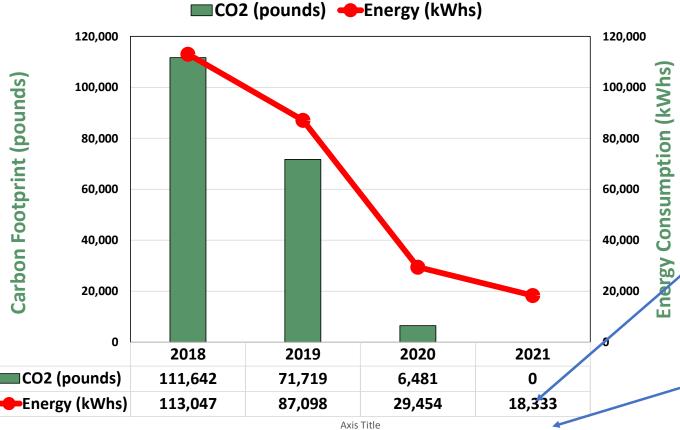
Home

Fleet



Community





- 2018-2019 drop = Solar PV installation
- 2019-2020 drop = geothermal installation
- Zero (0) energy carbon footprint within 3 years

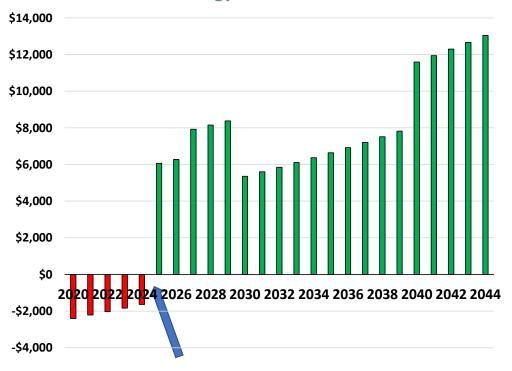
>80% energy consumption reduction

Renewable Transition Cash Flow Data

	Annual	Cummulative	Annual	Cummulative	Annual Savings	Cumulative	Carbon Savings (lbs)
2020	\$ 6,417	\$ 6,417	\$ 8,822	\$ 8,822	(2,405)	(2,405)	96,519
2021	\$ 6,610	\$ 13,027	\$ 8,822	\$ 17,644	(2,212)	(4,617)	96,519
2022	\$ 6,800	\$ 19,834	\$ 8,835	\$ 26,479	(2,027)	(6,644)	111,642
2023	\$ 7,012	\$ 26,846	\$ 8,848	\$ 35,327	(1,836)	(8,480)	111,642
2024	\$ 7,222	\$ 34,069	\$ 8,861	\$ 44,188	(1,639)	(10,119)	111,642
2025		\$ 41.508	\$ 1,375	\$ 45,563	6.064	(4.056)	111.642
2026	\$ 7,662	\$ 49,170	\$ 1,390	\$ 46,953	6,273	2,217	111,642
2027	\$ 7,892	\$ 57,062	\$ (36)	\$ 46,918	7,928	10,145	111,642
2028	\$ 8,129	\$ 65,191	\$ (20)	\$ 46,897	8,149	18,294	111,642
2029	\$ 8,37	\$ 73,564	\$ (5)	\$ 46,893	8,377	26,671	111,642
2030		\$ 82,188	\$ 3,267	\$ 50,159	5,357	32,028	111,642
2031	\$ 8,883	\$ 91,070	\$ 3,283	\$ 53,442	5,599	37,628	111,642
2032	\$ 9,149	\$ 100,219	\$ 3,300	\$ 56,743	5,849	43,477	111,642
2033	\$ 9,424	\$ 109,643	\$ 3,318	\$ 60,061	6,106	49,582	111,642
2034		\$ 119,349	\$ 3,336	\$ 63,397	6,370	55,953	111,642
2035	\$ 9,997	5 134,847	\$ 3,355	\$ 66,752	6,643	68,095	111,642
2036			\$ 3,374		6,923	75,018	111,642
2037	\$ 10,600	\$ 155,750	\$ 3,394	\$ 73,520	7,212	82,231	111,642
2038		\$ 166,675	\$ 3,414	\$ 76,934	7,510	89,741	111,642
2039			\$ 3,436	\$ 80,370	7,817	97,558	111,642
2040		\$ 189,517	\$ -	\$ 80,370	11,590	109,147	111,642
2041			\$ -	\$ 80,370	11,938	121,085	111,642
2042		-	\$ -	\$ 80,370	12,296	133,380	111,642
2043			\$ -	\$ 80,370	12,665	146,045	111,642
2044	\$ 13.044	\$ 239,459	<u>s</u> -	\$ 80,370	13,044	159,089	111,642
	\$ 239,459		\$ 80,370		Lbs CO2	Pound CO2	2,760,802
	\$ 9,578		\$ 3,215		Tons CO2	Tons CO2	1,380

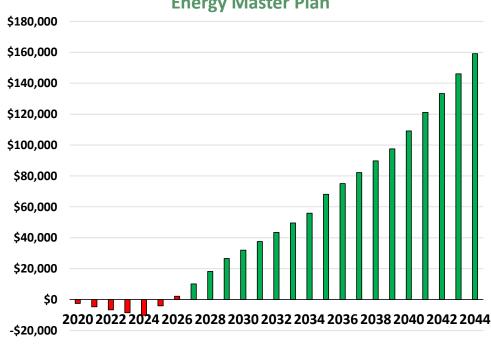
Notes

- Positive cash by year 5.5
- \$159k in net cash
- Hedged against inflation
- ~1400 Tons of lifetime carbon savings
- ROI ~8%
- 20 yr. solar loan
- 5 yr. geothermal loan
- Investment tax credits pay down loans

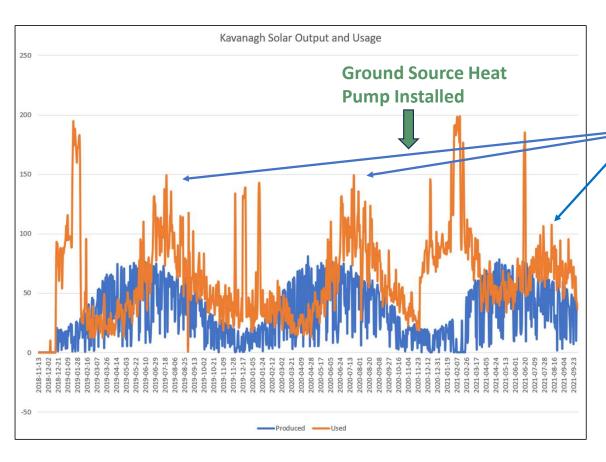

Assumptions

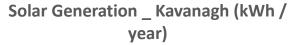
- 3% escalator on utilities
- \$210/SREC (10 yrs.) (old program)
- Typical replace furnace at 15yrs

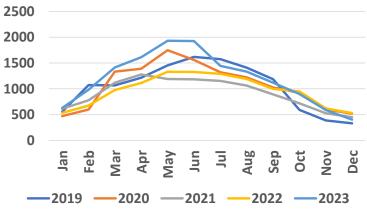
Kavanagh 25 Year Cash Flows for Renewable Transition



Positive Cash Flow after 5.5 years


Cumulative Cash Flow _ Kavanagh Zero Carbon Energy Master Plan

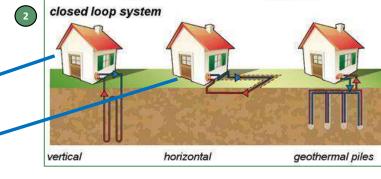

- \$159k positive cash flow (25 year) 198% ROI/8% annual ROI
- ~\$15k additional rebates (cars)
- More savings beyond warranty & ground loop lifespan (50+yrs)



Kavanagh Solar Production vs Usage (Electric)

- Summer peak electric demands lower after Geothermal installed
- Peak solar output ~75kWh/day in June/July
- December lowest solar output ~20kWh/day
- Spring usually has a surplus (lower energy usage and higher solar production)

Ground Source Heat Pump – Benefits [3]


- Low Energy Use (25-50% less energy, ~500% COP)
- Free or Reduced-Cost Hot Water (uses excess)
- Year-Round Comfort (quieter, lower humidity)
- Design Flexibility (new or retrofit)
- Improved Aesthetics (no external heat exchangers)
- Low Environmental Impact (~44% reduction)*
- Durability (no exposed parts, 25-50yr warranty)
- Reduced Vandalism (no outdoor parts)
- Low Maintenance (1/3 of cost)
- Zone Heating/Cooling
- No fossil fuel supply chains (natural gas, oil)
- Commercial and Residential Applications
- A GSHP system can be installed in virtually any area of the country and will save energy and money. [3]
- According to the Environmental Protection Agency (EPA), GeoExchange systems are the most energy efficiency, environmentally clean and cost-effective space conditioning systems available [4]
- A GSHP is up to 5 times more efficient than a gas boiler. This combined with the low carbon intensity of the grid, means that installing a GSHP instead of a gas boiler, will reduce emissions by 87%. [6]

*Environmental impact is reduced even more when paired with renewable energy electric sources like solar PV or clean energy purchasing ~ 0

Select a Technology ▼ Geothermal vs.						
	Geothermal	Natural Gas				
Efficiency Rating	500%	98%				
Capable of Zoning	✓	√				
Ooes Not Use Fossil Fuels or Release Harmful Emmissions	~	×				
No Combustion	✓	×				
No Carbon Monoxide or Oil Leaks	✓	×				
Not Impacted by Volatile Operating/Fuel Costs	✓	×				
leating and Cooling in One Unit (and hot water capabilities)	✓	×				
Most environmentally friendly (According to the EPA)	✓	×				
No Outdoor Equipment	✓	×				
Uses the Earth's Free Heat (For every 1 unit of electricity used, you get 4 units free)	✓	× [5]				

Ground Source Heat Pumps – Types [1]

- 1 Open Loop
 - 1. Well, groundwater heat pump
 - 2. Heat exchange with a direct water source (well or pond)
- 2 Closed Loop
 - A. Drilled or buried ground heat exchanger depending upon space and geology
 - B. Vertical
 - C. Horizontal
 - D. Pond

water body

(C) Horizontal Trench

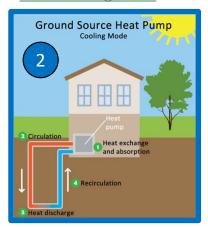
(D) Submerged Pond Loop

open loop system

Ground Source Heat Pump (GSHP) – What is it?


- A geothermal heat pump (GHP) or ground source heat pump (GSHP) is a central heating and/or cooling system that transfers heat to or from the ground, often through a vapor-compression refrigeration cycle. Commercial and residential applications. [1]
- Also known as a "geoexchange, earth-coupled, or earth energy system" (different from pure geothermal). [1]
- A ground source heat pump extracts ground heat in the winter (for heating \bigcirc) and transfers heat back into the ground in the summer (for cooling \bigcirc).[1]

Takes advantage of near constant temperature in the upper 20ft of the Earth's surface due to


the sun's energy [2]

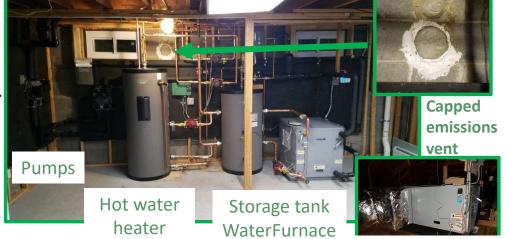
<u>Heating Mode</u> – Extracting heat from home

<u>Cooling Mode – Moving</u> heat to the ground

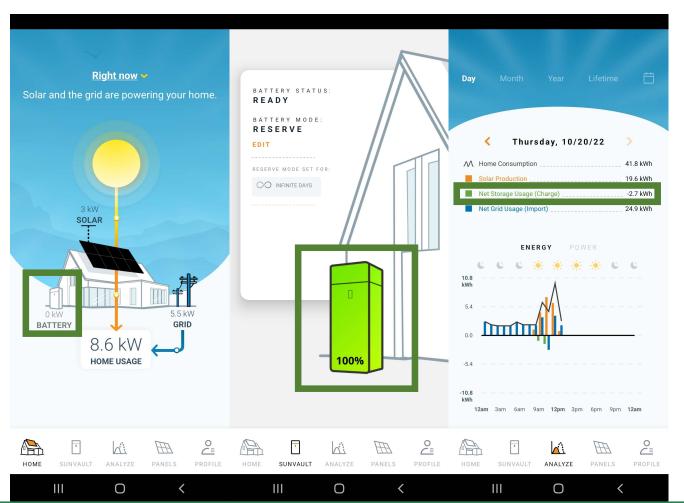
Our GSHP Install (2020)

Green Insight

- Drilling (1 week)
 - (3) ~250' deep vertical ground exchange wells
 - Single underground loop
- <u>Install</u> connection and equipment install (6 days)
 - Attic (heat/cool air handler + insulation)
 - Basement (water heater, pumps, storage tank, WaterFurnace, remove outside AC condenser



Before (natural gas furnace and hot water heater)


After (GSHP heating, air conditioning and water heater)

Attic air handler

SunPower SunVault_® Energy Storage System (ESS)

- 2022 installed 52-kilowatt hour energy storage system
- Whole house back up in event of outage
- Pairs with solar system and recharges during the day
- Indefinite back up at reduced load
- 10-year warranty on battery capacity

Mega SunVault™ Storage Install – YouTube

<u>SunVault the Solar Battery Storage</u> System for Homeowners | SunPower

www.greeninsight.green

Copyright Notice This presentation is protected by U.S. and International copyright laws. Reproduction and distribution of the presentation without written permission of the sponsor is prohibited.

Volt Plug in Hybrid (PHEV) Savings Analysis

Vet Savings

#/Ga	llon	\$/k	Wh
\$	3.00	\$	0.15

Economy:	Fuel	Electric Consumption (kWh/100mi):	Mi/kWh	Electric Miles:	kWh used (estimated)	Gas Miles:	Total Miles:	Percentage on Electric:	ercentage on Gas:	Estimated Gallons of Fuel Saved:	Per US EIA	CO 1	Gas Savings	Gallons Burned	\$ Spent on Gas	Estimated CO2 Avoided (lbs):	(lbs) CO2 per Gallon of Fuel
March 12	23 mpg	41	2.4	462	189	132	593	78%	22%	21	\$	2.55	\$ 53.47	4	\$ 11.20	407	19.4
April 25	50+ mpg	31	3.2	539	167	48	588	92%	8%	24	\$	2.77	\$ 66.48	2	\$ 4.43	473	19.7
May 74	4 mpg	32	3.1	810	259	865	1,675	48%	52%	50	\$	2.81	\$140.70	29	\$ 81.14	973	19.5
June 20		33	3.0	659	217	147	805	82%	18%	31	\$	2.67	\$ 82.80	5	\$ 13.09	601	19.4
July 10	01 mpg	36	2.8	687	247	356	1,043	66%	34%	35	\$	2.73	\$ 95.41	12	\$ 32.35	680	19.4
August 10	08 mpg	35	2.9	956	335	529	1,485	64%	36%	51	\$	2.61	\$133.31	18	\$ 46.09	986	19.3
	50+ mpg	31	3.2	1,041	323	132	1,173	89%	11%	48	\$	2.57	\$123.12	4	\$ 11.29	923	19.2
October 74	4 mpg	37	2.7	702	260	833	1,535	46%	54%	46	\$	2.55	\$117.25	28	\$ 70.78	894	19.4
November 15		38	2.6	664	252	176	840	79%	21%	31	\$	2.54	\$ 78.83	6	\$ 14.92	601	19.4
December 73	3	39	2.6	347	135	251	840	58%	42%	18	\$	2.55	\$ 45.94	8	\$ 21.35	346	19.2
TOTAL		35.3	2.9	6,867	2,385	3,469	10,577	65%	35%	355			\$937.31	116	\$306.64	6884	19.4

Electric Costs
Electric Cost/Mile

\$ 358 \$ 0.052

3674

Gas Costs Saved Gas Costs / Mile \$ 937 \$ 0.136

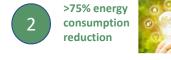
Estimated Total kWhs Full Electric

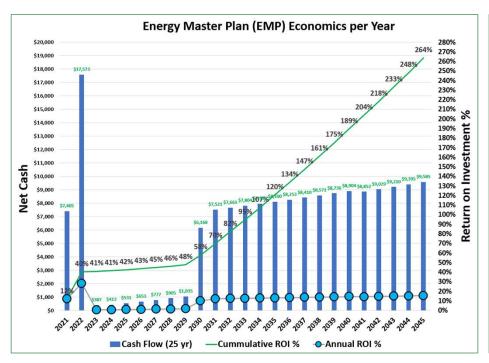
Cost per mile is 3X lower for EVs - ~\$750 savings / yr + maintenance savings

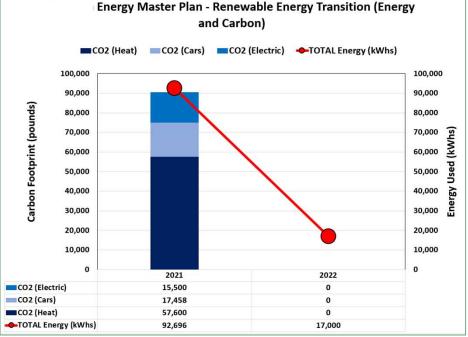
*Savings even higher with increasing gas prices 2021 onward >> Avg gas costs > \$3.75/gallon 4.18.24

Renewable Cash Flow Data & Carbon Impact

Green Insight


Maryland Case Study


Zero (0)
energy carbon
footprint
within 1 years



Includes electric, heating/cooling, and transportation energy demands.

Payback by year 7. Positive cash flow from year 1. Tax credit year 2.

Thank you! Questions?

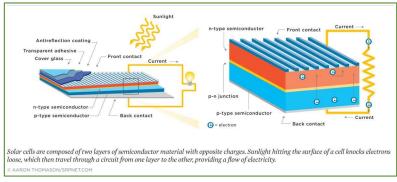
Matt Kavanagh
Founder **Green Insight LLC**www.greeninsight.green
Matt.Kavanagh@greeninsight.green
(973) 379-0992

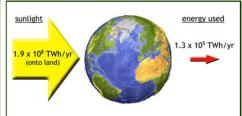
About Green Insight

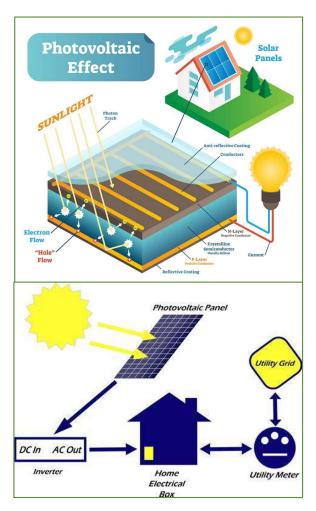
Foremost Decarbonization Services (DaaS) in Morris Plains

Are you looking to reduce your residential carbon footprint, but you don't know where to start? Don't worry Green Insight LLC is there for you. We provide decarbonization as a service (DaaS), in a variety of

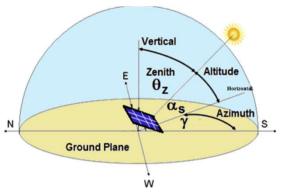
ways. Choose from our contract review, carbon footprint analysis, or DaaS complete package services! We aim to improve our clients' lives as well as save them money by evaluating energy consumptions, costs and solving any efficiency issues we find with our services. We are located in Morris Plains but we also offer our fantastic services in the surrounding area. To get to know more about our services you can contact us at (973)397-0992 and we'll be glad to help with any inquiry. Changing the world begins with you!




Appendix


How Does Solar Works - Science

- 1. Photos of light hit the solar cells or PV material and dislodge electrons which creates a voltage across the gap (~0.5V).
- 2. Multiple cells create a voltage per PV module, and these are strung together like lights to form "strings".
- 3. Each string produces power and current which is then converted to AC power for use in your home and tied to your electric panel (before = line side) or (after = load side) the grid connection.
- 4. Anything extra power (instantaneously unused) is returned to the grid via a bidirectional meter (net metering)



How Does Solar Work – Performance Factors

kWh per Watt in our area is 1 – 1.4 kWh/Watt/year

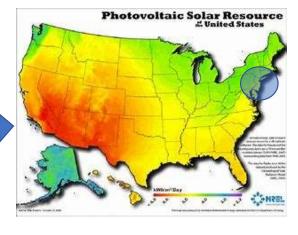
1) Orientation to the Sun (south is best)

UK Solar Orientation Chart (orientation and tilt)

Tilt (°)	West							South							East					
	90	80	70	60	50	40	30	20	10	0	10	20	30	40	50	60	70	80	90	
0	87	88	90	91	92	92	93	93	93	93	93	93	92	92	91	90	89	87	86	
10	84	87	90	92	94	95	95	96	96	97	97	96	95	94	93	91	89	87	84	
20	82	85	90	93	94	96	97	98	99	99	98	97	96	95	93	91	88	84	81	
30	78	83	87	91	93	96	97	98	99	100	98	97	96	95	93	89	85	81	78	
40	75	79	84	87	92	94	95	96	96	96	96	95	94	92	90	86	82	77	72	
50	70	74	79	83	87	90	91	93	94	94	94	93	91	88	83	80	76	73	70	
60	65	69	73	77	80	83	86	87	87	87	88	87	85	82	78	74	71	67	63	
70	59	63	66	70	72	75	78	79	79	79	79	79	78	75	72	68	64	61	56	
80	50	56	60	64	66	68	69	70	71	72	72	71	70	67	66	60	57	54	50	
90	41	49	54	58	59	60	61	61	63	65	65	63	62	59	60	52	50	47	44	

Source: PVNI.org.uk

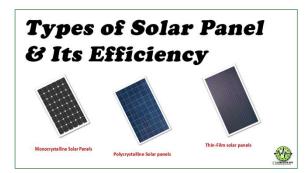
2) Shade (no/low shade is best)
Project Sunroof (google.com)

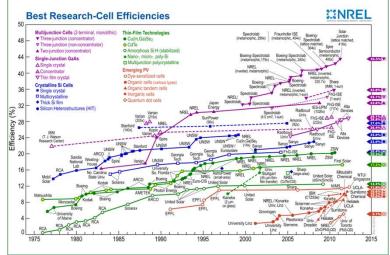


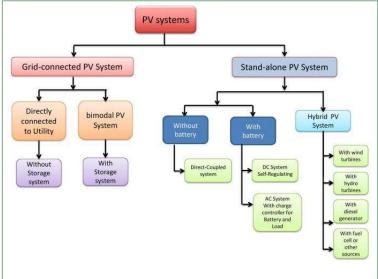
3) Location on Earth (high sun, high altitude areas are best)

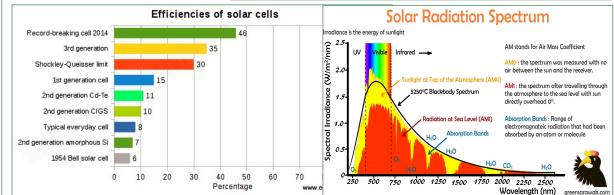
Green

Insight

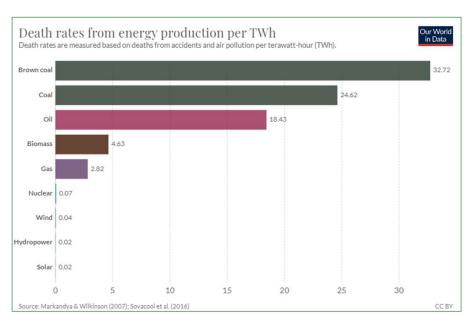


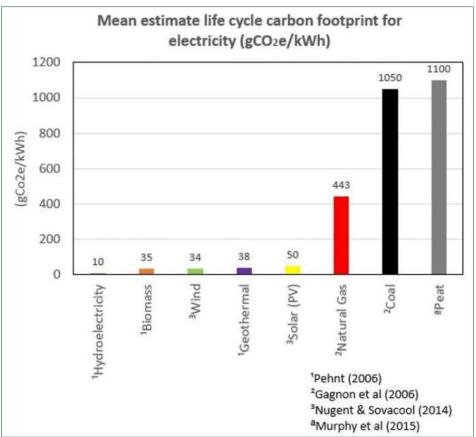

PV Types (efficiencies vary & efficiency matters)



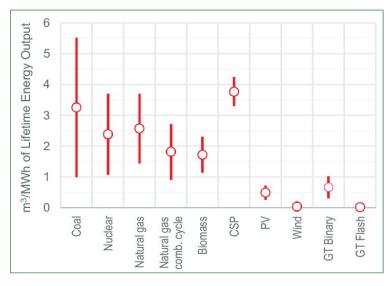

Types of Solar

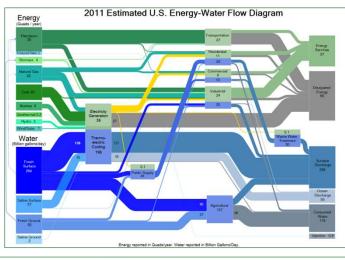
Systems: (grid connected, stand alone)

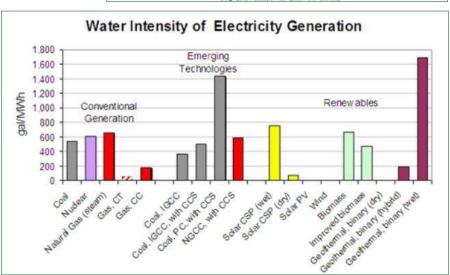




Benefits of Solar – Clean / Safe

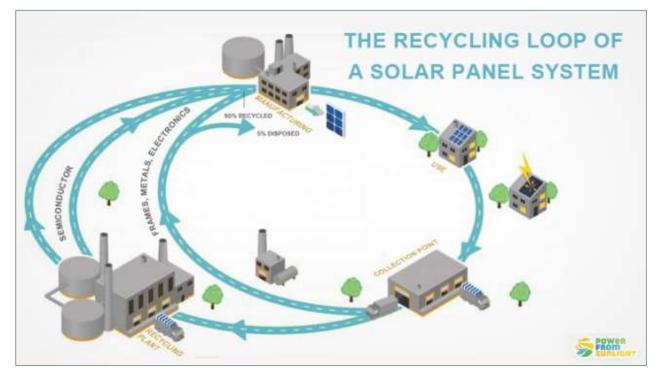

- Carbon savings due to not burring fossil fuels and due to reduced supply chains
- Reduced societal impacts comparted to the alternate





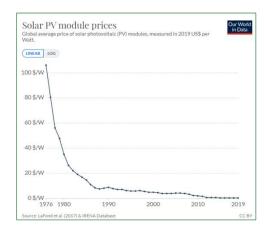
Benefits of Solar - Low Water Usage

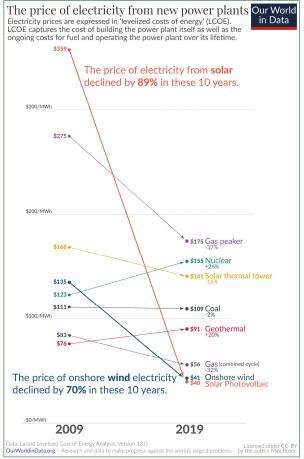
- Some generation means use large amounts of water to cool thermal cycles (law of thermodynamics)
- Solar PV has no thermal cycle

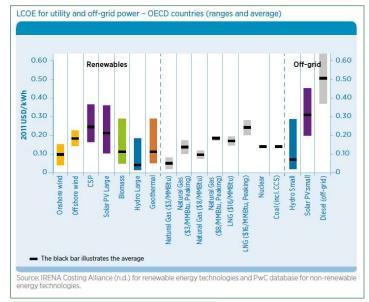


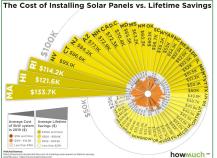
Benefits of Solar – Circular / Sustainable

- Solar modules can be recycled
- Mostly glass and aluminum
- 95-98% recyclable
- More innovation to come
- You can't recycle fossil fuels

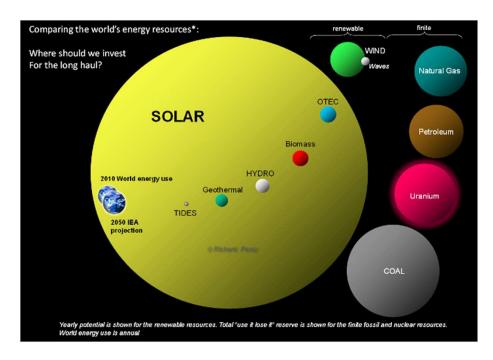




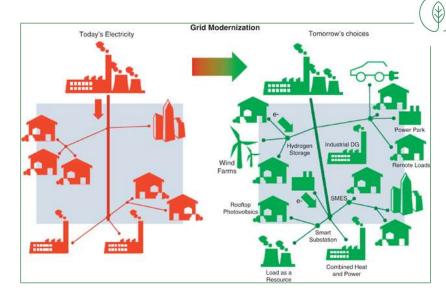

Benefits of Solar - Cheap (now)

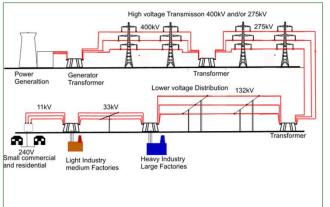


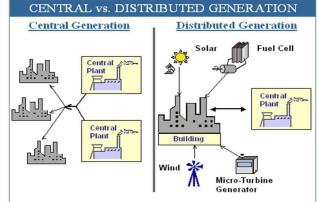
- True measure is called Levelized Cost of Electricity (LCOE)
- Fossil fuel costs do not include environmental costs
- Solar follows a learning curve reduction
- Savings come from no / low electric costs



Benefits of Solar - Abundant

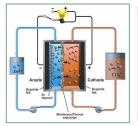

- The sun is the most abundant resource we have
- The sun is available almost anywhere
- No fuel supply chains required (e.g., coal, natural gas)
- 1 hour of sun could power humanity for a year





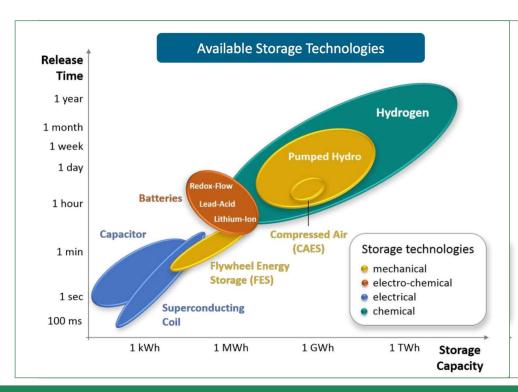

Benefits of Solar – Distributed

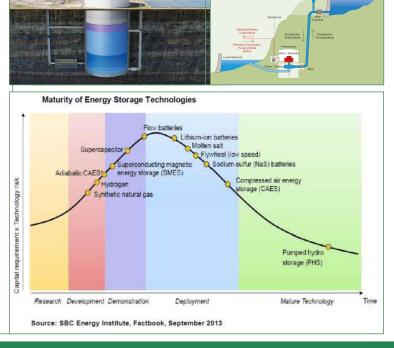
- Grid network consists of central power plants supplying electricity of miles of power lines
- Renewable energy + storage offers micro-grid capabilities (off grid cities).
- Grid modernization is a key priority as solar increases
- Provides resiliency during power outages



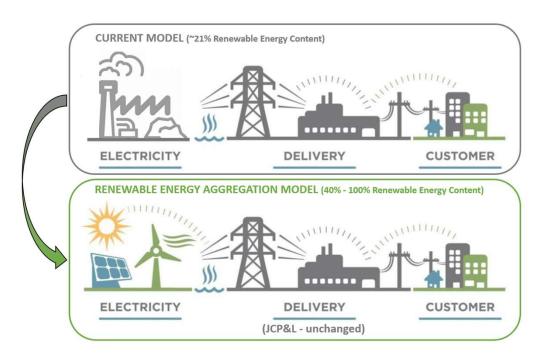
Green Insight

Renewable Energy Storage Systems (ESS)




- Intermittency problem when the sun doesn't shine, we still need energy. Solution = store it for later.
- Incredible spectrum of energy storage options
- (electrical, mechanical, chemical, gravity, kinetic, thermal)

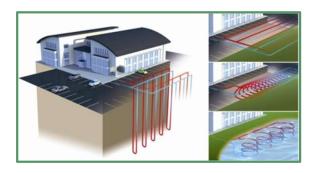
The principle:



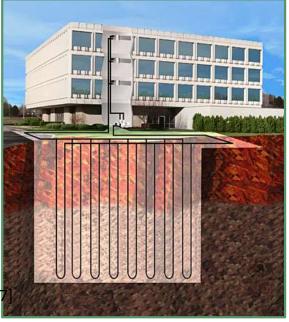
3rd Party Clean Energy Providers

- If you can't do solar, 3rd party suppliers is an option to go renewable/green
- 3rd party suppliers for the energy portion of your bill can be swapped in for JCP&L with higher content of renewable energy (wind or solar) up to 100%
- Process is a paper transaction change, JCP&L remains your supply side provider. Your bill remains through JCP&L
- Renewable energy is not always produced locally but the fees subsidize a specific installation

Towns can entertain a state program called renewable government energy aggregation (R-GEA)

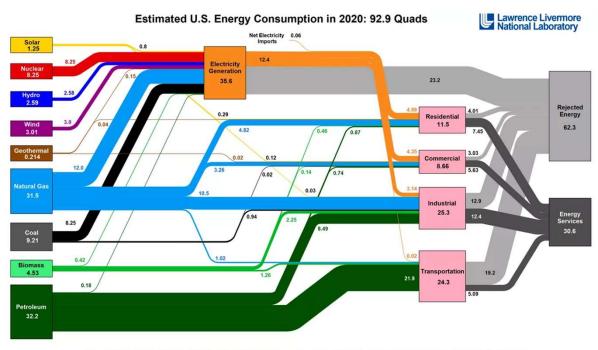

This is a way to team up with the buying power of the town/neighbors to get the best price and avoid any complexity of doing a 3rd party contact individually

Sustainable Jersey has a specific action for this and Parsippany is working on this option



Ground Source Heat Pump – Commercial

- GSHPs can be used for commercial buildings for space conditioning
- Retrofit or new construction
- Heat exchanger under parking lot makes use of wasted space



US Energy Consumption in 2020

- 92.9 gross Quads of energy (27.3 Petawatt hours) >50% energy consumption reduction possible
- Ground source heat pumps can reduce gross residential and commercial heating demand by >~15 Quads
- Electric vehicles can reduce transportation gross demand by >~10 Quads
- Renewable energy can reduce electric generation demand by >~25 Quads

Sources LIM. Merch, 2021. Data is based on DOUTEA MEM (2025). If this information or a reproduction of it is used, credit must be given to the Lawrence Livernore National Laboratory and the Department of Design, which we have supplied the work was performed. Distributed electricity represents only retain | descriptive performance and the performance of the performance of

References:

- [1] "Geothermal Heat Pump" (2020) Geothermal heat pump Wikipedia
- [2] "Groundwater temperature's measurement and significance National Groundwater Association". National Groundwater Association. 23 August 2015.
- [3] "Geothermal Heat Pumps," DOE/GO-10098-652 FS 105, September 1998. Geothermal Heat Pumps | Department of Energy
- [4] "Space Conditioning: The Next Frontier," EPA 430-R-93-004, April 1993. <u>Document Display</u> | NEPIS | US EPA
- [5] "The Advantages of Geothermal" (2020), GeoComfort.com. <u>Geothermal Benefits</u> (geocomfort.com)
- [6] "Energy Infrastructure of the Future: Ground Source Heat Pumps" (2020), NIBE. <u>NIBE GSHP PAPER.pdf</u>
- [7] "Community Builder" (2018), MattamyHomes. <u>PowerPoint Presentation</u> (<u>escribemeetings.com</u>)

Copyright Notice

This presentation is protected by U.S. and International copyright laws. Reproduction and distribution of the presentation without written permission of the sponsor is prohibited.